
Math 341 Lecture #31
§6.5: Power Series

We now turn our attention to a particular kind of series of functions, namely, power
series,

f(x) =
∞∑
n=0

anx
n = a0 + a1x+ a2x

2 + · · ·

where an ∈ R for all n ∈ N.

In terms of a series of functions, we have fn(x) = anx
n which is infinitely differentiable

(and continuous) for each n = 0, 1, 2, 3, . . . .

Theorem 6.5.1. If a power series
∑∞

n=0 anx
n converges at some point x0 ∈ R, then it

converges absolutely for any x satisfying |x| < |x0|.
See the Appendix for a proof.

The main implication of Theorem 6.5.1 is that the subset of R on which a power series
converges is either {0}, a bounded interval centered at 0, or R.

In the bounded interval case, there is some ambiguity about the endpoints because of
the strict inequality in Theorem 6.5.1.

The bounded interval of convergence can be one of four possible forms: (−R,R), [−R,R),
(−R,R], or [−R,R] for some R > 0.

We call R the radius of convergence in the bounded interval case.

We assign R = 0 when the set of convergence is {0}, and R = ∞ when the set of
convergence is R.

Recall that a standard way to find the radius of convergence R for a power series is the
Ratio Test.

We now turn our attention to properties of a power series that converges absolutely at
some point.

Theorem 6.5.2. If a power series
∑∞

n=0 anx
n converges absolutely at a point x0, then

the power series converges uniformly on the compact interval [−c, c] where c = |x0|.
Proof. Suppose for some x0 we have that

∞∑
n=0

|anxn0 |

converges.

With Mn = |anxn0 | for each n = 0, 1, 2, 3, . . . , we have for all x satisfying |x| ≤ |x0| that

|anxn| ≤ |anxn0 | = Mn.

Since we have the convergence of

∞∑
n=0

Mn =
∞∑
n=0

|anxn0 |,



the Weierstrass M -Test implies that

∞∑
n=0

anx
n

converges uniformly on A = [−c, c] for c = |x0|. �

We can now prove that when a power series converges on an open interval (−R,R) with
R > 0 or R =∞, the power series is a continuous function on (−R,R).

For a fixed x1 satisfying 0 < x1 < R we pick x0 such that x1 < x0 < R.

The convergence of
∑∞

n=0 anx
n
0 implies by Theorem 6.5.1 that

∑∞
n=0 anx

n converges ab-
solutely on the open interval |x| < x0.

Since 0 < x1 < x0, we have that
∑∞

n=0 anx
n converges absolutely at x1.

By Theorem 6.5.2, we have that
∑∞

n=0 anx
n converges uniformly on [−x1, x1].

Since each fn(x) = anx
n is continuous on [−x1, x1], we have by Theorem 6.4.2 that the

power series is continuous on [−x1, x1].
Since x1 satisfying 0 < x1 < R is arbitrary, we have that

∑∞
n=0 anx

n is continuous on
(−R,R).

Example. Determine where the power series

∞∑
n=1

(−1)nxn

n

is continuous.

Without using the Ratio Test, we can determine the radius of convergence for this series.

The n in the denominator suggests that we evaluate the power series at x = −1: we have

∞∑
n=1

(−1)n(−1)n

n
=
∞∑
n=1

1

n

which diverges by Corollary 2.4.7.

This says that the radius of convergence satisfies R ≤ 1.

For any 0 < x ≤ 1, we have that xn/n is a decreasing sequence converging to 0, so by
the Alternating Series Test (Theorem 2.7.7), we have convergence of the power series on
(0, 1].

This says that the radius of convergence satisfies R ≥ 1.

Thus we have that R = 1, and so the power series is continuous on (−1, 1).

The power series converges at x = 1, but it is continuous at x = 1? Could the conditional
convergence at x = 1 prevent continuity at x = 1?

We see in this example that the interval of convergence could be of the form (−R,R],
and the question is then is the power series continuous on (−R,R].



We answer this in the affirmative.

Theorem 6.5.4 (Abel’s Theorem). If g(x) =
∑∞

n=0 anx
n converges at x = R > 0,

then the power series converges uniformly on [0, R]. A similar result holds when the
power series converges at x = −R < 0.

See the Appendix for a proof.

This answers the question that when the interval of convergence of a power series includes
or one or both endpoints we have continuity of the power series on that interval.

We can say something even stronger.

Theorem 6.5.5. If a power series converges pointwise on a set A ⊆ R, then it converges
uniformly on any compact subset K of A.

Proof. Let K be a compact subset of A.

Then the points a = inf K and b = sup K both belong to K, and we have that K ⊆ [a, b].

Since a, b ∈ A, we have the convergence of the power series at a and b.

If a < 0 and b > 0, then by Abel’s Theorem we have uniform convergence of the power
series on [a, 0] and [0, b], hence uniform convergence on [a, b], and thus on K as well.

If a ≥ 0 then b ≥ a ≥ 0, giving uniform convergence on [0, b] and hence on K.

If b ≤ 0 then a ≤ b ≤ 0, giving uniform convergence on [a, 0] and hence on K. �

How about the differentiability of a convergent power series?

According to Theorem 6.4.3, we need uniform convergence of the term by term differen-
tiated series.

By Theorem 6.5.5, it suffices to get pointwise convergence of the term by term differen-
tiated series.

Theorem 6.5.6. If
∑∞

n=0 anx
n converges for all x ∈ (−R,R) for R > 0, then the

term-wise differentiated series
∑∞

n=1 nanx
n−1 converges for all x ∈ (−R,R) as well.

See the Appendix for a proof.

We can now summarize the totality of the theory of convergence power series we have
proven in this section.

Theorem 6.5.7. Suppose that

g(x) =
∞∑
n=0

anx
n

converges on an interval A ⊆ R. Then g is continuous on A and differentiable on any
open subinterval of A, where

g′(x) =
∞∑
n=1

nanx
n−1.

Moreover, g(x) is infinitely differentiable on any open subinterval of A, and successive
derivatives of g are obtained through term by term differentiation of g′(x), g′′(x), etc.



Appendix.

Proof of Theorem 6.5.1. Suppose there is x0 ∈ R such that
∑∞

n=0 anx
n
0 converges.

By Theorem 2.7.3 we have that the terms anx
n
0 → 0 as n→∞.

Being convergent, the sequence (anx
n
0 ) is bounded: there is a real M > 0 such that we

have |anxn0 | ≤M for all n = 0, 1, 2, 3, . . . . For any x ∈ R that satisfies |x| < |x0|, we have

|anxn| = |anx0|n
∣∣∣∣ xx0
∣∣∣∣n ≤M

∣∣∣∣ xx0
∣∣∣∣n .

Since |x/x0| < 1, we have that the geometric series

∞∑
n=0

∣∣∣∣ xx0
∣∣∣∣n

converges, and so by the Algebraic Limit Theorem for Series (Theorem 2.7.1) we have
that

∞∑
n=0

M

∣∣∣∣ xx0
∣∣∣∣n

converges as well.

By the Comparison Theorem (Theorem 2.7.4) we have that

∞∑
n=0

|anxn|

converges, and so by the Absolute Convergence Test (Theorem 2.7.6) we have that

∞∑
n=0

anx
n

converges absolutely as well. �

Lemma 6.5.3 (Abel’s Lemma). Let bn satisfy b1 ≥ b2 ≥ b3 ≥ · · · ≥ 0. Let
∑∞

n=1 an
be a series whose sequence of partial sums sm =

∑m
n=1 an is bounded: there is A > 0

such that |sm| ≤ A for all m ∈ N. Then for integers n > m ≥ 0 there holds∣∣∣∣∣
n∑

j=m+1

ajbj

∣∣∣∣∣ ≤ 2Abm+1.

Proof. Each sm is defined for m ≥ 1. We will need an s0 which we set to 0.

We first show the “summation by parts” formula

n∑
j=m+1

ajbj = snbn+1 − smbm+1 +
n∑

j=m+1

sj(bj − bj+1)



holds for all n ≥ 1 and all m ≥ 0. [Think of this like “integration by parts.”]

Starting with the right hand side of this formula, we have for m ≥ 1 that

snbn+1 − smbm+1 +
n∑

j=m+1

sj(bj − bj+1)

= (a1 + · · ·+ an)bn+1 − (a1 + · · ·+ am)bm+1

+ (a1 + · · ·+ am + am+1)bm+1 − (a1 + · · ·+ am + am+1)bm+2

+ (a1 + · · ·+ am+1 + am+2)bm+2 − (a1 + · · ·+ am+1 + am+2)bm+3

...

+ (a1 + · · ·+ an−2 + an−1)bn−1 − (a1 + · · ·+ an−2 + an−1)bn

+ (a1 + · · ·+ an−1 + an)bn − (a1 + · · ·+ an)bn+1

= am+1bm+1 + am+2bm+2 + · · ·+ anbn

=
n∑

j=m+1

ajbj,

which is the left hand side of the formula.

The only difference in the case of m = 0 are the second and third terms after the first
equal sign above, which result in a term of a1b1.

By this “summation by parts” formula, for m ≥ 0, we have∣∣∣∣∣
n∑

j=m+1

ajbj

∣∣∣∣∣ =

∣∣∣∣∣snbn+1 − smbm+1 +
n∑

j=m+1

sj(bj − bj+1)

∣∣∣∣∣
≤ |sn|bn+1 + |sm|bm+1 +

n∑
j=m+1

|sj|(bj − bj+1)

= |sn|bn+1 + |sm|bm+1 + |sm|(bm+1 − bm+2) + · · ·+ |sn|(bn − bn+1)

≤ Abn+1 + Abm+1 + A(bm+1 − bm+2) + · · ·+ A(bn − bn+1)

= Abm+1 + Abm+1

= 2Abm+1,

which establishes the desired inequality. �

Proof of Abel’s Theorem. Applying the Cauchy Criterion to the convergent series∑∞
n=0 anR

n we have for each ε > 0 the existence of N ∈ N such that for all n > m ≥ N
we have

|am+1R
m+1 + am+2R

m+2 + · · ·+ anR
n| < ε

3
.

We are driving for the Cauchy Criterion for Uniform Convergence on the interval [0, R].

To this end, we have for any x ∈ [0, R] and n > m ≥ N that

am+1x
m+1 + am+2x

m+2 + · · ·+ anx
n

= am+1R
m+1

( x
R

)m+1

+ am+2R
m+2

( x
R

)m+2

+ · · ·+ anR
n
( x
R

)n
.



We then apply Lemma 6.5.3 to the sequences (anR
n) and (x/R)n to get for all n > m ≥ N

and all x ∈ [0, R] that∣∣∣∣am+1R
m+1

( x
R

)m+1

+ am+2R
m+2

( x
R

)m+2

+ · · ·+ anR
n
( x
R

)n∣∣∣∣
≤ 2

( ε
3

)( x
R

)m+1

< ε.

By the Cauchy Criterion for Uniform Convergence on the interval [0, R] (Theorem 6.2.5),
we have the uniform convergence of the power series on [0, R]. �

Proof of Theorem 6.5.6. We work towards the Weierstrass M -Test to get uniform conver-
gence of the term by term differentiated power series

∑∞
n=1 nanx

n−1 on compact subin-
tervals of (−R,R).

To this end, let x1 ∈ (0, R) and pick t satisfying x1 < t < R.

Then for all x satisfying |x| ≤ x1, we have

|nanxn−1| =
1

t

(
n

∣∣∣∣xn−1tn−1

∣∣∣∣) |antn| ≤ 1

t

(
n

∣∣∣∣xn−11

tn−1

∣∣∣∣) |antn|.
Since

∑∞
n=0 ant

n converges we have that the terms ant
n are bounded: there is L > 0 such

that |antn| ≤ L for all n = 0, 1, 2, 3, . . . , and so

|nanxn−1| ≤
L

t

(
n

∣∣∣∣xn−11

tn−1

∣∣∣∣) = Mn

for all |x| ≤ x1 and all n ∈ N.

For s = |x1/t| and bn = nsn−1 we have that Mn = (L/t)bn where

lim
n→∞

bn+1

bn
= lim

n→∞

(n+ 1)sn

nsn−1
= lim

n→∞

(n+ 1)s

n
= s.

Since 0 < s < 1, there exists N ∈ {0} ∪ N such that for all n ≥ N we have that

bn+1

bn
< 1.

Pick 0 < r < 1 that for all n ≥ N satisfies

bn+1

bn
< r.

Then we have that bN+1 < bNr, and by induction that bN+k < bNr
k for all k ≥ 1.

The geometric series
∞∑
k=1

bNr
k



converges because 0 < r < 1, and so by the Comparison Test, the series

∞∑
n=N+1

bn =
∞∑

n=N+1

nsn−1

converges as well.

Thus the series
∞∑
n=1

Mn =
∞∑
n=1

L

t

(
n

∣∣∣∣xn−1tn−1

∣∣∣∣)
converges, so that by the Weierstrass M -Test, the series

∞∑
n=1

nanx
n−1

converges uniformly on the interval [−x1, x1], and hence pointwise on [−x1, x1].
Since x1 satisfying 0 < x1 < R is arbitrary, we have convergence of the term by term
differentiated series

∑∞
n=1 nanx

n−1 at every point x in (−R,R). �


