Math 341 Lecture \#32
 §6.6: Taylor Series

Most of the functions you have seen in Calculus, such as arctan, exp, and ln, can be written, or have a representation, as a convergent power series.

What about other familiar functions in Calculus?
Example 6.6.1. Find a power series representation for arctan.
We know that

$$
\frac{d}{d t} \arctan (t)=\frac{1}{1+t^{2}},
$$

and that

$$
\frac{1}{1-t}=1+t+t^{2}+t^{3}+t^{4}+\cdots
$$

for $t \in(-1,1)$ (the convergent geometric series).
Replacing t with $-t^{2}$ in the geometric series give

$$
\frac{1}{1+t^{2}}=1-t^{2}+t^{4}-t^{6}+t^{8}-\cdots
$$

which is a convergent power series on the interval $(-1,1)$, i.e., the radius of convergence is $R=1$.

By the Fundamental Theorem of Calculus we know that

$$
\arctan (x)=\int_{0}^{x} \frac{1}{1+t^{2}} d t
$$

Now assuming that we can integrate a convergent power series term by term to get another convergent power series (on the same open interval of convergence) we have that

$$
\int_{0}^{x} \frac{1}{1+t^{2}} d t=\int_{0}^{x}\left\{1-t^{2}+t^{4}-t^{6}+\cdots\right\} d t=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots
$$

and so we get the power series representation

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7}+\cdots, \text { for }|x|<1
$$

You will investigate the convergence at $x=1$ (homework problem 6.6.1).
We will rigorous justify that the integration of convergent power series term by term gives a convergent power series in Chapter 7.
Now we turn to the question of the relationship between a convergent power series $f(x)$ and the coefficients a_{n} in it.
Theorem 6.6.2 (Taylor's Formula). If, for some $R>0$, we have

$$
f(x)=\sum_{n=0}^{\infty} a_{n} x^{n},|x|<R,
$$

then

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

Proof. To get the value of a_{0} we set $x=0$ in the power series to get

$$
f(0)=\sum_{n=0}^{\infty} a_{n} 0^{n}=a_{0}
$$

To get the value of a_{1} we set $x=0$ in the first derivative to get

$$
f^{\prime}(0)=\sum_{n=1}^{\infty} n a_{n} 0^{n-1}=1 a_{1} .
$$

To get the value of a_{2} we set $x=0$ in the second derivative to get

$$
f^{\prime \prime}(0)=\sum_{n=2}^{\infty} n(n-1) a_{n} 0^{n-2}=(2)(1) a_{2}=2!a_{2}
$$

Continuing this pattern we get $f^{(n)}(0)=n!a_{n}$, so that

$$
a_{n}=\frac{f^{(n)}(0)}{n!}
$$

for each $n=0,1,2,3, \ldots$
The converse of Taylor's Formula asks if we have an infinitely differentiable function $f(x)$ defined on an open interval I centered at 0 , does the Taylor series for f,

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

converge to $f(x)$ on I ?
Example. The function $f(x)=\sin (x)$ is infinitely differentiable on \mathbb{R}. Since $f(0)=0$, $f^{\prime}(0)=1, f^{\prime \prime}(0)=0, f^{(4)}(0)=-1$, with the pattern repeating forever, the Taylor series for \sin is

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
$$

Does this Taylor's series converge to $\sin (x)$?
For a Taylor series

$$
\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} x^{n}
$$

convergence is in terms of the sequence of partial sums

$$
s_{N}(x)=\sum_{n=0}^{N} \frac{f^{(n)}(0)}{n!} x^{n}=a_{0}+a_{1} x+\cdots+a_{N} x^{N}
$$

We are asking whether for each x in the interval of convergence do we have

$$
\lim _{N \rightarrow \infty} s_{N}(x)=f(x)
$$

Recast we are asking if the error function

$$
E_{N}(x)=f(x)-s_{N}(x)
$$

goes to 0 as $n \rightarrow \infty$.
Theorem 6.6.1 (Lagrange's Theorem). Let f be infinitely differentiable on $(-R, R)$ for $R>0$, and define $a_{n}=f^{(n)}(0) / n$!. For a nonzero $x \in(-R, R)$, there exists a point c satisfying $|c|<|x|$ such that

$$
E_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}
$$

See the Appendix for a proof.
Example. The Taylor series of $f(x)=\cos (x)$ is

$$
1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

For every $x \neq 0$, there is by Lagrange's Theorem a c satisfying $|c|<|x|$ such that

$$
\left|\cos (x)-s_{N}(x)\right|=\left|\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}\right|
$$

Since $\left|f^{(N+1)}(x)\right|$ is either $|\cos (x)|$ or $|\sin x|$, we have that $\left|f^{(N+1)}(c)\right| \leq 1$.
Restricting x to the compact interval $[-K, K]$ we then have that

$$
\left|\cos (x)-s_{N}(x)\right| \leq \frac{K^{N+1}}{(N+1)!} \rightarrow 0
$$

Since K is arbitrary, we conclude that for every $x \in \mathbb{R}$ we have that

$$
\cos (x)=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots
$$

Is there an infinitely differentiable function $f(x)$ whose Taylor series does not converge to $f(x)$?
Counterexample. Consider the function

$$
g(x)= \begin{cases}\exp \left(-1 / x^{2}\right) & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

This function is infinitely differentiable when $x \neq 0$.

Is g differentiable at 0 ? Well,

$$
\lim _{x \rightarrow 0^{-}} \frac{g(x)-g(0)}{x-0}=0
$$

while

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{\exp \left(-1 / x^{2}\right)}{x}=\lim _{x \rightarrow 0^{+}} \frac{1 / x}{\exp \left(1 / x^{2}\right)}
$$

This is a ∞ / ∞ situation, so by L'Hospital's Rule we have

$$
\lim _{x \rightarrow 0^{+}} \frac{g(x)-g(0)}{x-0}=\lim _{x \rightarrow 0^{+}} \frac{-1 / x^{2}}{\left(-2 / x^{3}\right) \exp \left(1 / x^{2}\right)}=\lim _{x \rightarrow 0^{+}} \frac{x}{2 \exp \left(1 / x^{2}\right)}=0
$$

We we have that g is differentiable at 0 with $g^{\prime}(0)=0$.
Similarly, we can show that g is infinitely differentiable at 0 with $g^{(n)}(0)=0$.
Thus the Taylor series for $g(x)$ is

$$
\sum_{n=0}^{\infty} \frac{g^{(n)}(0)}{n!} x^{n}=0+0 x+0 x^{2}+0 x^{3}+\cdots=0
$$

For $x>0$ this Taylor series does not converge to $g(x)$ since $g(x)>0$ while the Taylor series is 0 .

Appendix. Proof of Lagrange's Remainder Theorem. The Taylor coefficients $a_{0}, a_{1}, \ldots, a_{N}$ have been chosen so that f and s_{N} have the same derivatives at $x=0$, i.e.,

$$
f^{(n)}(0)=s_{N}^{(n)}(0), n=0,1,2, \ldots, N
$$

with $s_{N}^{(N+1)}=0$. Thus the error function satisfies

$$
E_{N}^{(n)}(0)=0, n=0,1,2, \ldots, N
$$

WLOG suppose $x>0$. By the Generalized Mean Value Theorem to the functions E_{N} and x^{N+1} on the interval $[0, x]$: there exists $x_{1} \in(0, x)$ such that

$$
\frac{E_{N}(x)}{x^{N+1}}=\frac{E_{N}^{\prime}\left(x_{1}\right)}{(N+1) x_{1}^{N}}
$$

We then apply the Generalized Mean Value Theorem to the functions $E_{N}^{\prime}(x)$ and $(N+$ 1) x^{N} on the interval $\left[0, x_{1}\right]$: there exists $x_{2} \in\left(0, x_{1}\right)$ such that

$$
\frac{E_{N}^{\prime}\left(x_{1}\right)}{(N+1) x_{1}^{N}}=\frac{E_{N}^{\prime \prime}\left(x_{2}\right)}{(N+1) N x_{2}^{N-1}} .
$$

Continuing to apply the Generalized Mean Value Theorem we obtain $x_{N+1} \in\left(0, x_{N}\right) \subseteq$ $\cdots \subseteq(0, x)$ satisfying

$$
\frac{E_{N}^{(N)}\left(x_{N}\right)}{(N+1) N \cdots 2 x_{N}}=\frac{E_{N}^{(N+1)}\left(x_{N+1}\right)}{(N+1)!}
$$

Thus the first and last terms are the same:

$$
\frac{E_{N}(x)}{x^{N+1}}=\frac{E_{N}^{(N+1)}\left(x_{N+1}\right)}{(N+1)!}
$$

Since $s_{N}^{(N+1)}\left(x_{N+1}\right)=0$, we have $E_{N}^{(N+1)}\left(x_{N+1}\right)=f^{(N+1)}\left(x_{N+1}\right)$, so that with $c=x_{N+1}$, we obtain

$$
E_{N}(x)=\frac{f^{(N+1)}(c)}{(N+1)!} x^{N+1}
$$

