
Math 341 Lecture #32
§6.6: Taylor Series

Most of the functions you have seen in Calculus, such as arctan, exp, and ln, can be
written, or have a representation, as a convergent power series.

What about other familiar functions in Calculus?

Example 6.6.1. Find a power series representation for arctan.

We know that
d

dt
arctan(t) =

1

1 + t2
,

and that
1

1− t
= 1 + t + t2 + t3 + t4 + · · ·

for t ∈ (−1, 1) (the convergent geometric series).

Replacing t with −t2 in the geometric series give

1

1 + t2
= 1− t2 + t4 − t6 + t8 − · · ·

which is a convergent power series on the interval (−1, 1), i.e., the radius of convergence
is R = 1.

By the Fundamental Theorem of Calculus we know that

arctan(x) =

∫ x

0

1

1 + t2
dt.

Now assuming that we can integrate a convergent power series term by term to get
another convergent power series (on the same open interval of convergence) we have that∫ x

0

1

1 + t2
dt =

∫ x

0

{1− t2 + t4 − t6 + · · ·} dt = x− x3

3
+

x5

5
− x7

7
+ · · ·

and so we get the power series representation

arctan(x) = x− x3

3
+

x5

5
− x7

7
+ · · ·, for |x| < 1.

You will investigate the convergence at x = 1 (homework problem 6.6.1).

We will rigorous justify that the integration of convergent power series term by term
gives a convergent power series in Chapter 7.

Now we turn to the question of the relationship between a convergent power series f(x)
and the coefficients an in it.

Theorem 6.6.2 (Taylor’s Formula). If, for some R > 0, we have

f(x) =
∞∑
n=0

anx
n, |x| < R,



then

an =
f (n)(0)

n!
.

Proof. To get the value of a0 we set x = 0 in the power series to get

f(0) =
∞∑
n=0

an0n = a0.

To get the value of a1 we set x = 0 in the first derivative to get

f ′(0) =
∞∑
n=1

nan0n−1 = 1a1.

To get the value of a2 we set x = 0 in the second derivative to get

f ′′(0) =
∞∑
n=2

n(n− 1)an0n−2 = (2)(1)a2 = 2!a2.

Continuing this pattern we get f (n)(0) = n!an, so that

an =
f (n)(0)

n!

for each n = 0, 1, 2, 3, . . . . �

The converse of Taylor’s Formula asks if we have an infinitely differentiable function f(x)
defined on an open interval I centered at 0, does the Taylor series for f ,

∞∑
n=0

f (n)(0)

n!
xn,

converge to f(x) on I?

Example. The function f(x) = sin(x) is infinitely differentiable on R. Since f(0) = 0,
f ′(0) = 1, f ′′(0) = 0, f (4)(0) = −1, with the pattern repeating forever, the Taylor series
for sin is

∞∑
n=0

f (n)(0)

n!
xn = x− x3

3!
+

x5

5!
− x7

7!
+ · · ·.

Does this Taylor’s series converge to sin(x)?

For a Taylor series
∞∑
n=0

f (n)(0)

n!
xn

convergence is in terms of the sequence of partial sums

sN(x) =
N∑

n=0

f (n)(0)

n!
xn = a0 + a1x + · · ·+ aNx

N .



We are asking whether for each x in the interval of convergence do we have

lim
N→∞

sN(x) = f(x).

Recast we are asking if the error function

EN(x) = f(x)− sN(x)

goes to 0 as n→∞.

Theorem 6.6.1 (Lagrange’s Theorem). Let f be infinitely differentiable on (−R,R)
for R > 0, and define an = f (n)(0)/n!. For a nonzero x ∈ (−R,R), there exists a point c
satisfying |c| < |x| such that

EN(x) =
f (N+1)(c)

(N + 1)!
xN+1.

See the Appendix for a proof.

Example. The Taylor series of f(x) = cos(x) is

1− x2

2!
+

x4

4!
− x6

6!
+ · · · .

For every x 6= 0, there is by Lagrange’s Theorem a c satisfying |c| < |x| such that

| cos(x)− sN(x)| =
∣∣∣∣f (N+1)(c)

(N + 1)!
xN+1

∣∣∣∣ .
Since |f (N+1)(x)| is either | cos(x)| or | sinx|, we have that |f (N+1)(c)| ≤ 1.

Restricting x to the compact interval [−K,K] we then have that

| cos(x)− sN(x)| ≤ KN+1

(N + 1)!
→ 0.

Since K is arbitrary, we conclude that for every x ∈ R we have that

cos(x) = 1− x2

2!
+

x4

4!
− x6

6!
+ · · · .

Is there an infinitely differentiable function f(x) whose Taylor series does not converge
to f(x)?

Counterexample. Consider the function

g(x) =

{
exp(−1/x2) if x > 0

0 if x ≤ 0.

This function is infinitely differentiable when x 6= 0.



Is g differentiable at 0? Well,

lim
x→0−

g(x)− g(0)

x− 0
= 0,

while

lim
x→0+

g(x)− g(0)

x− 0
= lim

x→0+

exp(−1/x2)

x
= lim

x→0+

1/x

exp(1/x2)
.

This is a ∞/∞ situation, so by L’Hospital’s Rule we have

lim
x→0+

g(x)− g(0)

x− 0
= lim

x→0+

−1/x2

(−2/x3) exp(1/x2)
= lim

x→0+

x

2 exp(1/x2)
= 0.

We we have that g is differentiable at 0 with g′(0) = 0.

Similarly, we can show that g is infinitely differentiable at 0 with g(n)(0) = 0.

Thus the Taylor series for g(x) is

∞∑
n=0

g(n)(0)

n!
xn = 0 + 0x + 0x2 + 0x3 + · · · = 0.

For x > 0 this Taylor series does not converge to g(x) since g(x) > 0 while the Taylor
series is 0.



Appendix. Proof of Lagrange’s Remainder Theorem. The Taylor coefficients a0, a1, . . . , aN
have been chosen so that f and sN have the same derivatives at x = 0, i.e.,

f (n)(0) = s
(n)
N (0), n = 0, 1, 2, . . . , N,

with s
(N+1)
N = 0. Thus the error function satisfies

E
(n)
N (0) = 0, n = 0, 1, 2, . . . , N.

WLOG suppose x > 0. By the Generalized Mean Value Theorem to the functions EN

and xN+1 on the interval [0, x]: there exists x1 ∈ (0, x) such that

EN(x)

xN+1
=

E ′N(x1)

(N + 1)xN
1

.

We then apply the Generalized Mean Value Theorem to the functions E ′N(x) and (N +
1)xN on the interval [0, x1]: there exists x2 ∈ (0, x1) such that

E ′N(x1)

(N + 1)xN
1

=
E ′′N(x2)

(N + 1)NxN−1
2

.

Continuing to apply the Generalized Mean Value Theorem we obtain xN+1 ∈ (0, xN) ⊆
· · · ⊆ (0, x) satisfying

E
(N)
N (xN)

(N + 1)N · · · 2xN

=
E

(N+1)
N (xN+1)

(N + 1)!
.

Thus the first and last terms are the same:

EN(x)

xN+1
=

E
(N+1)
N (xN+1)

(N + 1)!
.

Since s
(N+1)
N (xN+1) = 0, we have E

(N+1)
N (xN+1) = f (N+1)(xN+1), so that with c = xN+1,

we obtain

EN(x) =
f (N+1)(c)

(N + 1)!
xN+1.


