
Math 341 Lecture #33
§7.2: The Definition of the Riemann Integral

We begin by recalling the definition of the Riemann integral.

Starting with a function f on [a, b], we partition [a, b] into subintervals [xk−1, xk], pick
sample points ck ∈ [xk−1, xk], and form the sum

n∑
k=1

f(ck)∆xk

where ∆xk = xk − xk−1.
We defined the integral of f on [a, b] to be the limit of the Riemann sums as max ∆k → 0,
provided the limit exists.

We will approach the Riemann integral differently, using supremums and infimums.

Let f be a bounded function defined on the compact interval [a, b]; there is M > 0 such
that |f(x)| ≤M for all x ∈ [a, b].

Definition 7.2.1. A partition of [a, b] is a finite, ordered set of points

P = {a = x0 < x1 < x2 < · · · < xn = b}.

Set ∆xk = xk − xk−1 for each k = 1, 2, . . . , n.

For each subinterval [xk−1, xk] of P we set

mk = inf{f(x) : x ∈ [xk−1, xk]} and Mk = sup{f(x) : x ∈ [xk−1, xk]}.

The lower sum of f with respect to P is given by

L(f, P ) =
n∑
k=1

mk∆xk.

The upper sum of f with respect to P is given by

U(f, P ) =
n∑
k=1

Mm∆xk.

For a given partition, because mk ≤Mk on each [xk−1, xk] we have that

L(f, P ) ≤ U(f, P ).

But what happens when we change partitions?

Definition 7.2.2. A partition Q is a refinement of a partition P , written P ⊆ Q, if Q
contains all of the points of P .

Lemma 7.2.3. If P ⊆ Q, then L(f, P ) ≤ L(f,Q) and U(f, P ) ≥ U(f,Q).

Proof. Let [xk−1, xk] be an subinterval of P .



Suppose there is a point z ∈ Q such that xk−1 < z < xk, so that z “splits” [xk−1, xk] into
two subintervals [xk−1, z] and [z, xk].

We have the infimum mk of f on [xk−1, xk].

Let m′k = inf{f(x) : x ∈ [z, xk]} and m′′k = inf{f(x) : x ∈ [xk−1, z]}.
Then we have that mk ≤ m′k and mk ≤ m′′k (the infimum of f over a larger set cannot
get bigger), so that

mk∆xk = mk(xk − xk−1)
= mk(xk − z + z − xk−1)
= mk(xk − z) +mk(z − xk−1)
≤ m′k(xk − z) +m′′k(z − xk).

This implies that the lower sum cannot get smaller when adding more points to a parti-
tion.

A similar argument show that the upper sum cannot get bigger when adding more points
to a partition. �

We would think it strange if a lower sum for one partition were bigger than an upper
sum for another partition. Luckily this cannot happen.

Lemma 7.2.4. If P1 and P2 are partitions of [a, b], then L(f, P1) ≤ U(f, P2).

Proof. We form a third partition and use Lemma 7.2.3.

The partition Q = P1 ∪ P2 is a refinement of P1 and a refinement of P2; it is a common
refinement of both P1 and P2.

Because P1 ⊆ Q and P2 ⊆ Q, we have that

L(f, P1) ≤ L(f,Q) ≤ U(f,Q) ≤ U(f, P2)

by Lemma 7.2.3. �

This raises the questions: what is the supremum of the lower sums, and what is the
infimum of the upper sums, and are they the same?

Definition 7.2.5. Let P be the collection of all possible partitions of [a, b]. The upper
integral of f on [a, b] is

U(f) = inf{U(f, P ) : P ∈ P}
and the lower sum of f is

L(f) = sup{L(f, P ) : P ∈ P}.

Lemma 7.2.6. For any bounded function f on [a, b], there holds L(f) ≤ U(f).

Proof. For partitions P and Q of [a, b] we have by Lemma 7.2.4 that L(f, P ) ≤ U(f,Q).

So U(f,Q) is an upper bound on the set {L(f, P ) : P ∈ P}.
It follows that

L(f) = sup{L(f, P ) : P ∈ P} ≤ U(f,Q).



This says that L(f) is a lower bound for U(f,Q), so that

L(f) ≤ inf{U(f,Q) : Q ∈ P} = U(f),

thus giving the inequality. �

A special situation happens when L(f) = U(f).

Definition 7.2.7 (Riemann Integrability) A bounded function f on the compact
interval [a, b] if Riemann-integrable if U(f) = L(f). In this case we write∫ b

a

f = U(f) = L(f).

There are other types of integration besides the Riemann integral, but we will stick to
the Riemann integral here, and drop the “Riemann” from Riemann-integrable.

What bounded functions on [a, b] are integrable?

We have the following integrability criterion, which in part will identity which bounded
functions are integrable. [The complete answer is in Section 7.6 at the top of page 242.]

Theorem 7.2.8. A bounded function f is integrable on [a, b] if and only if for every
ε > 0 there exists a partition Pε of [a, b] such that

U(f, Pε)− L(f, Pε) < ε.

Proof. Suppose for each ε > 0 there exists a partition Pε of [a, b] such that U(f, Pε) −
L(f, Pε) < ε.

Since U(f) ≤ U(f, Pε) and L(f) ≥ L(f, Pε) we have that

U(f)− L(f) ≤ U(f, Pε)− L(f, Pε) < ε.

The arbitrariness of ε > 0 then implies that U(f) = L(f), and so f is integrable.

Now suppose that f is integrable so that U(f) = L(f).

Let ε > 0.

Since U(f) is the infimum of U(f, P ) over all partitions P of [a, b], there exists a partition
P1 such that

U(f, P1) < U(f) +
ε

2
.

Since L(f) is the supremum of L(f, P ) over all partitions P of [a, b], there exists a
partition P2 such that

L(f, P2) > L(f)− ε

2
.

For the common refinement Pε = P1 ∪ P2 and with U(f) = L(F ) we have

U(f, Pε)− L(f, Pε) ≤ U(f, P1)− L(f, P2)

= U(f, P1)− U(f) + L(f)− L(f, P2)

<
ε

2
+
ε

2
= ε,



which gives the integrability criterion. �

A continuous function f on the compact [a, b] is bounded by the Extreme Value Theorem.

We are now in position to prove that every continuous function on [a, b] is integrable.

Theorem 7.2.9. If f is continuous on the compact [a, b], then f is integrable.

Proof. The continuity of f on the compact [a, b] implies the uniform continuity of f on
[a, b].

Thus for ε > 0 there exists δ > 0 such that when |x− y| < δ with x, y ∈ [a, b], we have

|f(x)− f(y)| < ε

b− a
.

We are driving for the criterion for integrability.

To this end we choose a partition P of [a, b] where ∆xk < δ for all k = 1, . . . , n.

The function f is continuous on the compact subinterval [xk−1, xl] of P , so we have by
the Extreme Value Theorem points yk, zk ∈ [xk−1, xk] where f(yk) = mk and f(zk) = Mk.

Since yk, zk ∈ [xk−1, xk] we have that

Mk −mk = f(zk)− f(yk) <
ε

b− a
.

This implies that

U(f, P )− L(f, P ) =
n∑
k=1

(Mk −mk)∆xk <
ε

b− a

n∑
k=1

∆xk = ε.

Therefore, f is integrable by Theorem 7.2.8. �

This raises the question about how discontinuous a bounded function can be and yet still
be integrable.


