Math 341 Lecture #33
§7.2: The Definition of the Riemann Integral

We begin by recalling the definition of the Riemann integral.

Starting with a function f on [a,b], we partition [a,b] into subintervals [xy_1,zx], pick
sample points ¢ € [xg_1, x|, and form the sum

> flen)Amy
k=1

where Az, = x), — x4_1.

We defined the integral of f on [a, b] to be the limit of the Riemann sums as max A, — 0,
provided the limit exists.

We will approach the Riemann integral differently, using supremums and infimums.

Let f be a bounded function defined on the compact interval [a, b]; there is M > 0 such
that | f(z)] < M for all z € [a, b].

Definition 7.2.1. A partition of [a,b] is a finite, ordered set of points
P={a=xy<mi <9< <z, =0}

Set Axy, = xp, — xp_q1 foreach k=1,2,....,n.

For each subinterval [x_1, x| of P we set
my, = inf{f(x) : x € [xp_1,2x]} and My = sup{f(z) : © € [x)_1, x1]}.

The lower sum of f with respect to P is given by

k=1

The upper sum of f with respect to P is given by
U(f,P) =) MyAxy.
k=1

For a given partition, because my < M}, on each [z)_1,x;] we have that

L(f, P) <U(f, P).

But what happens when we change partitions?

Definition 7.2.2. A partition Q is a refinement of a partition P, written P C @Q, if Q
contains all of the points of P.

Lemma 7.2.3. If P C Q, then L(f,P) < L(f,Q) and U(f, P) > U(f,Q).

Proof. Let [xy_1, x| be an subinterval of P.



Suppose there is a point z € @) such that zx_; < z < xy, so that z “splits” [zx_1, zx] into
two subintervals [z;_1, 2] and [z, x].

We have the infimum my, of f on [xp_1, xk].
Let mj, = inf{f(z) : © € [z, z]} and m] = inf{f(z) : © € [xx_1, 2]}
Then we have that my < mj and my < mj (the infimum of f over a larger set cannot
get bigger), so that
mkAxk = mk(a:k — $k_1)

= mk(xk —Z+z— l’kfl)

=my(xp — 2) + mp(z — 1)

<mi(zr — 2) + my(z — z).
This implies that the lower sum cannot get smaller when adding more points to a parti-
tion.

A similar argument show that the upper sum cannot get bigger when adding more points
to a partition. O

We would think it strange if a lower sum for one partition were bigger than an upper
sum for another partition. Luckily this cannot happen.

Lemma 7.2.4. If P, and P, are partitions of [a,b], then L(f, P1) < U(f, P,).
Proof. We form a third partition and use Lemma 7.2.3.

The partition () = P, U P, is a refinement of P; and a refinement of P»; it is a common
refinement of both P, and P;.

Because P, C () and P, C (), we have that

by Lemma 7.2.3. 0

This raises the questions: what is the supremum of the lower sums, and what is the
infimum of the upper sums, and are they the same?

Definition 7.2.5. Let P be the collection of all possible partitions of [a, b]. The upper
integral of f on [a,b] is

U(f) = inf{U(f,P): P € P}

and the lower sum of f is
L(f) = sup{L(f,P) : P € P}.

Lemma 7.2.6. For any bounded function f on [a, ], there holds L(f) < U(f).
Proof. For partitions P and @ of [a, b] we have by Lemma 7.2.4 that L(f, P) < U(f, Q).
So U(f,Q) is an upper bound on the set {L(f, P) : P € P}.

It follows that
L(f) =sup{L(f,P): P € P} <U([. Q).



This says that L(f) is a lower bound for U(f, @), so that

L(f) <mf{U(f,Q) : Q@ € P} = U(f),
thus giving the inequality. 0
A special situation happens when L(f) = U(f).

Definition 7.2.7 (Riemann Integrability) A bounded function f on the compact
interval [a, b] if Riemann-integrable if U(f) = L(f). In this case we write

/ f=U(f) = L(f).

There are other types of integration besides the Riemann integral, but we will stick to
the Riemann integral here, and drop the “Riemann” from Riemann-integrable.

What bounded functions on [a, b] are integrable?

We have the following integrability criterion, which in part will identity which bounded
functions are integrable. [The complete answer is in Section 7.6 at the top of page 242.]

Theorem 7.2.8. A bounded function f is integrable on [a,b] if and only if for every
e > 0 there exists a partition P. of [a, b] such that

U(f7P€) _L(fvpe) < €.
Proof. Suppose for each € > 0 there exists a partition P, of [a,b] such that U(f, P,) —
L(f,P.) <e.
Since U(f) < U(f, P.) and L(f) > L(f, P.) we have that

U(f) = L(f) SU(f, Pe) = L(f, P) <e.
The arbitrariness of € > 0 then implies that U(f) = L(f), and so f is integrable.
Now suppose that f is integrable so that U(f) = L(f).
Let € > 0.

Since U(f) is the infimum of U(f, P) over all partitions P of [a, b], there exists a partition
P, such that

U(f.P) <U(f) + 5.

Since L(f) is the supremum of L(f, P) over all partitions P of [a,b], there exists a
partition P, such that

€
DU > L0~ 5
For the common refinement P, = P U P, and with U(f) = L(F') we have

U(f,P) — L(f, P) S U(f, 1) = L(f, P»)
=U(f, 7)) = U(f) + L(f) = L(f, P»)

<€+€
— — =€
2 2 ’



which gives the integrability criterion. U
A continuous function f on the compact [a, b] is bounded by the Extreme Value Theorem.
We are now in position to prove that every continuous function on [a, b] is integrable.
Theorem 7.2.9. If f is continuous on the compact [a,b], then f is integrable.

Proof. The continuity of f on the compact [a,b] implies the uniform continuity of f on

la,b].
Thus for € > 0 there exists 6 > 0 such that when |z — y| < § with z,y € [a, b], we have

€

1) - )] < .

We are driving for the criterion for integrability.
To this end we choose a partition P of [a,b] where Axy < § for all k =1,... n.

The function f is continuous on the compact subinterval [z, ;] of P, so we have by
the Extreme Value Theorem points yi, 2, € [Tx_1, k] where f(yr) = my and f(zx) = M.

Since yg, 2, € [Tg_1, k] we have that

€

b—a

My, —my = f(z) — flur) <

This implies that

n

U(f,P) = L(f.P) = Y (M — mp) Az, < —— 3 Az =e.
k=1

b—a
k=1

Therefore, f is integrable by Theorem 7.2.8. 0J

This raises the question about how discontinuous a bounded function can be and yet still
be integrable.



