Math 341 Lecture #35 §7.4: Properties of the Integral, Part I

We establish a result about the Riemann integral that we assumed in the previous lecture to show that a bounded function with finitely many discontinuities is integrable.

This will require manipulating partitions.

Theorem 7.4.1. Assume $f : [a, b] \to \mathbb{R}$ is bounded, and let $c \in (a, b)$. Then f is integrable on [a, b] if and only if f is integrable on [a, c] and on [c, b]. In this case we have

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f.$$

Remark. We are suppressing the dx in the notation for the integral. It is understood that we are using dx to measure the lengths of the subintervals in a partition of [a, b].

Proof. Suppose that f is integrable on [a, b].

Then for each $\epsilon > 0$ there exists a partition P such that $U(f, P) - L(f, P) < \epsilon$.

If $c \in P$, then we define partitions $P_1 = P \cap [a, c]$ of [a, c] and $P_2 = P \cap [c, b]$ of [c, b].

If $c \notin P$, then we refine P to include c, which refinement doesn't alter $U(f, P) - L(f, P) < \epsilon$, and proceed as above to form the partitions P_1 and P_2 .

In the partition P we have $c = x_l$ for some 0 < l < n, and so

$$\epsilon > U(f, P) - L(f, P)$$
$$= \sum_{k=1}^{n} (M_k - m_k) \Delta x_k$$
$$\geq \sum_{k=1}^{l} (M_k - m_k) \Delta x_k$$
$$= U(f, P_1) - L(f, P_2)$$

because $M_k - m_k \ge 0$ for all $1 \le k \le n$. Similarly we also get that

$$\epsilon > U(f, P) - L(f, P) \ge U(f, P_2) - L(f, P_2).$$

Thus f is integrable on [a, c] and f is integrable on [c, b].

Now suppose that f is integrable on [a, c] and f is integrable on [c, b]. For $\epsilon > 0$ there are partitions P_1 of [a, c] and P_2 of [c, b] such that

$$U(f, P_1) - L(f, P_1) < \frac{\epsilon}{2}, U(f, P_2) - L(f, P_2) < \frac{\epsilon}{2}.$$

In the partition $P = P_1 \cup P_2$ of [a, b] there is 0 < l < n such that $x_l = c$, and so

$$U(f, P) - L(f, P) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k$$

= $\sum_{k=1}^{l} (M_k - m_k) \Delta x_k + \sum_{k=l+1}^{n} (M_k - m_k) \Delta x_k$
= $U(f, P_1) - L(f, P_1) + U(f, P_2) - L(f, P_2)$
< $\frac{\epsilon}{2} + \frac{\epsilon}{2}$
= ϵ .

Thus f is integrable on [a, c].

It remains to show that

$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

for which we use the partitions P_1 and P_2 above.

With $P = P_1 \cup P_2$ we have that $U(f, P) - L(f, P) < \epsilon$, so that

$$U(f, P) < L(f, P) + \epsilon.$$

Because $P = P_1 \cup P_2$ where $x_l = c$, we have

$$L(f,P) = \sum_{k=1}^{n} (M_k - m_k) \Delta x_k = \sum_{k=1}^{l} (M_k - m_k) \Delta x_k + \sum_{k=l+1}^{n} (M_k - m_k) \Delta x_k$$

= $L(f,P_1) + L(f,P_2).$

Thus we have

$$\int_{a}^{b} f \leq U(f, P) < L(f, P) + \epsilon$$
$$= L(f, P_{1}) + L(f, P_{2}) + \epsilon$$
$$\leq \int_{a}^{c} f + \int_{c}^{b} f + \epsilon,$$

which, since $\epsilon > 0$ is arbitrary, implies that

$$\int_{a}^{b} f \le \int_{a}^{c} f + \int_{c}^{b} f.$$

To get the other inequality, we recall that for the partitions P_1 and P_2 we have

$$U(f, P_1) - L(f, P_1) < \frac{\epsilon}{2},$$

$$U(f, P_2) - L(f, P_2) < \frac{\epsilon}{2},$$

so that

$$\int_{a}^{c} f + \int_{c}^{b} f \leq U(f, P_{1}) + U(f, P_{2})$$

$$< L(f, P_{1}) + L(f, P_{2}) + \frac{\epsilon}{2} + \frac{\epsilon}{2}$$

$$= L(f, P) + \epsilon$$

$$\leq \int_{a}^{b} f + \epsilon.$$

Again, the arbitrariness of $\epsilon > 0$ implies that

$$\int_{a}^{c} f + \int_{c}^{b} f \leq \int_{a}^{b} f.$$
$$\int_{a}^{b} f = \int_{a}^{c} f + \int_{c}^{b} f$$

as believed.

Thus we obtain

Rather than dealing with partitions all the time, we recall some familiar properties of the integral.

Theorem 7.4.2. Assume that f and g are integrable functions on [a, b].

- (i) The function f + g is integrable on [a, b] with $\int_a^b (f + g) = \int_a^b f + \int_a^b g$.
- (ii) For $k \in \mathbb{R}$, the function kf is integrable with $\int_a^b kf = k \int_a^b f$.
- (iii) If $m \le f \le M$, then $m(b-a) \le \int_a^b f \le M(a-b)$.
- (iv) If $f \leq g$ then $\int_a^b f \leq \int_a^b g$.
- (v) The function |f| is integrable and

$$\left|\int_{a}^{b} f\right| \le \int_{a}^{b} |f|.$$

Proof. (i) This follows by showing that $U(f+g, P) \leq U(f, P) + U(g, P)$ and $L(f+g, P) \geq L(f, P) + L(g, P)$ for all partitions P.

For part (ii) we use the integrability of f to find partitions P_n of [a, b] such that $U(f, P_n) - L(f, P_n) < 1/n$.

Then for $k \ge 0$ we show that $U(kf, P_n) = kU(f, P_n)$ and $L(kf, P_n) = kL(f, P_n)$ so that $U(kf, P_n) - L(kf_n, P_n) < k/n$ which goes to 0.

Thus kf is integrable on [a, b], and $\int_a^b kf = k \int_a^b f$.

What happens when k < 0?

Part (iii) follows by taking the trivial partition $P = \{a, b\}$.

Part (iv) follows by setting $h = g - f \ge 0$ and applying parts (i), (ii), and (iii).

Parti (v) is a Homework Problem (Exercises 7.4.1).