
Math 341 Lecture #36
§7.4: Properties of the Integral, Part II

Property (v) of Theorem 7.4.2., |
∫
f | ≤

∫
|f |, is very useful in analysis, and we will use

it to prove that if fn → f uniformly with each fn integrable on [a, b], then f is integrable
and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

It is this result that we need to justify integrating a convergence power series term by
term to get the integral of the power series.

When we defined the integral of f on [a, b] we tacitly assumed that a < b.

Definition 7.4.3. If f is integrable on [a, b], we define∫ a

b

= −
∫ b

a

f.

Also we define ∫ c

c

f = 0.

These conventions help with the algebra of integrals.

We can also extend the property ∫ b

a

f =

∫ c

a

f +

∫ b

c

f

from a < c < b to any a, b, c in the interval I on which f is integrable.

Now with the basic algebraic properties of the Riemann integral in place, we turn our
attention to how the Riemann integral handles sequences of functions.

If (fn) is a sequence of integrable functions on [a, b], and fn → f pointwise, does∫ b

a

fn →
∫ b

a

f ?

It is possible that f need not be integrable even when each fn is integrable, and so there
is no

∫ b

a
f to which

∫ b

a
fn can converge (see homework problem 7.3.7).

What else can go wrong?

Example. For each n ∈ N, the function fn : [0, 1]→ R defined by

fn(x) =

{
n if 0 < x < 1/n,

0 if x = 0 or 1/n ≤ x ≤ 1,

has two discontinuities and so is integrable with∫ 1

0

fn = 1.



The pointwise limit of fn is f(x) = 0, x ∈ [0, 1], for which∫ 1

0

f = 0.

Thus we have that ∫ 1

0

fn → 1 6=
∫ 1

0

f = 0.

Pointwise convergence is insufficient to get the result.

Theorem 7.4.4. Let fn be a sequence of functions defined on [a, b] converging pointwise
to f on [a, b]. If fn → f uniformly on [a, b], and each fn is integrable on [a, b], then f is
integrable and ∫ b

a

fn →
∫ b

a

f.

Proof. We showed in a Homework Problem (Exercise 7.2.5) that if each fn is integrable
and fn → f uniformly that f is integrable.

To show the convergence of the integrals, we consider∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣
which we want to show is smaller than ε for all sufficiently large n.

Since fn and f are integrable, then fn − f is integrable, and by the algebraic rules of
integration we have ∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣ =

∣∣∣∣∫ b

a

(fn − f)

∣∣∣∣
≤
∫ b

a

|fn − f |.

By the uniform convergence of fn to f , there exists N ∈ N such that for all n ≥ N we
have

|fn(x)− f(x)| < ε

b− a
for all x ∈ [a, b].

Thus we have for all n ≥ N that∫ b

a

|fn − f | ≤
∫ b

a

ε

b− a
= ε.

Putting it all together we have for every ε > 0 the existence of N ∈ N such that for all
n ≥ N there holds ∣∣∣∣∫ b

a

fn −
∫ b

a

f

∣∣∣∣ < ε.



This says that the sequence of numbers
∫ b

a
fn converges to the number

∫ b

a
f , or that∫ b

a

fn →
∫ b

a

f

in other words. �

Recall that we integrated a power series term by term to get the integral of the power
series.

We can now prove that this is true.

Theorem. Let A be the interval of convergence for a power series
∑∞

k=0 akx
k. Then for

[a, b] ⊆ A, we have ∫ b

a

∞∑
k=0

akx
k =

∞∑
k=0

∫ b

a

akx
k.

Proof. The interval [a, b] ⊆ A is compact, so that by Theorem 6.5.5, the power series
converges uniformly on [a, b].

Each partial sum fn(x) =
∑n

k=0 akx
k is integrable because it is a polynomial.

By Theorem 7.4.4 the power series f(x) =
∑∞

k=0 akx
k is integrable on [a, b] and

lim
n→∞

∫ b

a

fn =

∫ b

a

f.

Set

bk =

∫ b

a

akx
k, sn =

n∑
k=0

bk.

Then ∫ b

a

∞∑
k=0

akx
k =

∫ b

a

f [Definition of f ]

= lim
n→∞

∫ b

a

fn(x) [Theorem 7.4.4]

= lim
n→∞

∫ b

a

n∑
k=0

akx
k [Definition of fn]

= lim
n→∞

n∑
k=0

∫ b

a

akx
k [Integral of Finite sum]

= lim
n→∞

sn [Defintion of sn].

Hence the sequence of partial sums (sn) converges, giving∫ b

a

∞∑
k=0

akx
k = lim

n→∞
sn =

∞∑
k=0

bk =
∞∑
k=0

∫ b

a

akx
k,

which is the desired result. �


