Math 341 Lecture \#36
 §7.4: Properties of the Integral, Part II

Property (v) of Theorem 7.4.2., $\left|\int f\right| \leq \int|f|$, is very useful in analysis, and we will use it to prove that if $f_{n} \rightarrow f$ uniformly with each f_{n} integrable on $[a, b]$, then f is integrable and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f
$$

It is this result that we need to justify integrating a convergence power series term by term to get the integral of the power series.
When we defined the integral of f on $[a, b]$ we tacitly assumed that $a<b$.
Definition 7.4.3. If f is integrable on $[a, b]$, we define

$$
\int_{b}^{a}=-\int_{a}^{b} f
$$

Also we define

$$
\int_{c}^{c} f=0 .
$$

These conventions help with the algebra of integrals.
We can also extend the property

$$
\int_{a}^{b} f=\int_{a}^{c} f+\int_{c}^{b} f
$$

from $a<c<b$ to any a, b, c in the interval I on which f is integrable.
Now with the basic algebraic properties of the Riemann integral in place, we turn our attention to how the Riemann integral handles sequences of functions.
If $\left(f_{n}\right)$ is a sequence of integrable functions on $[a, b]$, and $f_{n} \rightarrow f$ pointwise, does

$$
\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f ?
$$

It is possible that f need not be integrable even when each f_{n} is integrable, and so there is no $\int_{a}^{b} f$ to which $\int_{a}^{b} f_{n}$ can converge (see homework problem 7.3.7).
What else can go wrong?
Example. For each $n \in \mathbb{N}$, the function $f_{n}:[0,1] \rightarrow \mathbb{R}$ defined by

$$
f_{n}(x)= \begin{cases}n & \text { if } 0<x<1 / n \\ 0 & \text { if } x=0 \text { or } 1 / n \leq x \leq 1\end{cases}
$$

has two discontinuities and so is integrable with

$$
\int_{0}^{1} f_{n}=1
$$

The pointwise limit of f_{n} is $f(x)=0, x \in[0,1]$, for which

$$
\int_{0}^{1} f=0
$$

Thus we have that

$$
\int_{0}^{1} f_{n} \rightarrow 1 \neq \int_{0}^{1} f=0
$$

Pointwise convergence is insufficient to get the result.
Theorem 7.4.4. Let f_{n} be a sequence of functions defined on $[a, b]$ converging pointwise to f on $[a, b]$. If $f_{n} \rightarrow f$ uniformly on $[a, b]$, and each f_{n} is integrable on $[a, b]$, then f is integrable and

$$
\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f
$$

Proof. We showed in a Homework Problem (Exercise 7.2.5) that if each f_{n} is integrable and $f_{n} \rightarrow f$ uniformly that f is integrable.
To show the convergence of the integrals, we consider

$$
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right|
$$

which we want to show is smaller than ϵ for all sufficiently large n.
Since f_{n} and f are integrable, then $f_{n}-f$ is integrable, and by the algebraic rules of integration we have

$$
\begin{aligned}
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right| & =\left|\int_{a}^{b}\left(f_{n}-f\right)\right| \\
& \leq \int_{a}^{b}\left|f_{n}-f\right|
\end{aligned}
$$

By the uniform convergence of f_{n} to f, there exists $N \in \mathbb{N}$ such that for all $n \geq N$ we have

$$
\left|f_{n}(x)-f(x)\right|<\frac{\epsilon}{b-a}
$$

for all $x \in[a, b]$.
Thus we have for all $n \geq N$ that

$$
\int_{a}^{b}\left|f_{n}-f\right| \leq \int_{a}^{b} \frac{\epsilon}{b-a}=\epsilon
$$

Putting it all together we have for every $\epsilon>0$ the existence of $N \in \mathbb{N}$ such that for all $n \geq N$ there holds

$$
\left|\int_{a}^{b} f_{n}-\int_{a}^{b} f\right|<\epsilon
$$

This says that the sequence of numbers $\int_{a}^{b} f_{n}$ converges to the number $\int_{a}^{b} f$, or that

$$
\int_{a}^{b} f_{n} \rightarrow \int_{a}^{b} f
$$

in other words.
Recall that we integrated a power series term by term to get the integral of the power series.
We can now prove that this is true.
Theorem. Let A be the interval of convergence for a power series $\sum_{k=0}^{\infty} a_{k} x^{k}$. Then for $[a, b] \subseteq A$, we have

$$
\int_{a}^{b} \sum_{k=0}^{\infty} a_{k} x^{k}=\sum_{k=0}^{\infty} \int_{a}^{b} a_{k} x^{k}
$$

Proof. The interval $[a, b] \subseteq A$ is compact, so that by Theorem 6.5.5, the power series converges uniformly on $[a, b]$.
Each partial sum $f_{n}(x)=\sum_{k=0}^{n} a_{k} x^{k}$ is integrable because it is a polynomial.
By Theorem 7.4.4 the power series $f(x)=\sum_{k=0}^{\infty} a_{k} x^{k}$ is integrable on $[a, b]$ and

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}=\int_{a}^{b} f
$$

Set

$$
b_{k}=\int_{a}^{b} a_{k} x^{k}, s_{n}=\sum_{k=0}^{n} b_{k} .
$$

Then

$$
\begin{aligned}
\int_{a}^{b} \sum_{k=0}^{\infty} a_{k} x^{k} & =\int_{a}^{b} f[\text { Definition of } f] \\
& =\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) \quad[\text { Theorem 7.4.4] } \\
& \left.=\lim _{n \rightarrow \infty} \int_{a}^{b} \sum_{k=0}^{n} a_{k} x^{k} \quad \text { [Definition of } f_{n}\right] \\
& =\lim _{n \rightarrow \infty} \sum_{k=0}^{n} \int_{a}^{b} a_{k} x^{k} \quad \text { [Integral of Finite sum] } \\
& =\lim _{n \rightarrow \infty} s_{n}\left[\text { Defintion of } s_{n}\right] .
\end{aligned}
$$

Hence the sequence of partial sums $\left(s_{n}\right)$ converges, giving

$$
\int_{a}^{b} \sum_{k=0}^{\infty} a_{k} x^{k}=\lim _{n \rightarrow \infty} s_{n}=\sum_{k=0}^{\infty} b_{k}=\sum_{k=0}^{\infty} \int_{a}^{b} a_{k} x^{k}
$$

which is the desired result.

