Math 341 Lecture #36
§7.4: Properties of the Integral, Part 11

Property (v) of Theorem 7.4.2., | [ f| < [|f], is very useful in analysis, and we will use
it to prove that if f,, — f uniformly with each f, integrable on [a, b], then f is integrable

and
b b
lim / fn = / f.
n—oo a a

It is this result that we need to justify integrating a convergence power series term by
term to get the integral of the power series.

When we defined the integral of f on [a, b] we tacitly assumed that a < b.
Definition 7.4.3. If f is integrable on [a, b], we define

[
/Ccf:o.

These conventions help with the algebra of integrals.

[o=[ o[

from a < ¢ < b to any a, b, c in the interval I on which f is integrable.

Also we define

We can also extend the property

Now with the basic algebraic properties of the Riemann integral in place, we turn our
attention to how the Riemann integral handles sequences of functions.

If (f,) is a sequence of integrable functions on [a, b], and f,, — f pointwise, does

/abfﬁ/abf?

It is possible that f need not be integrable even when each f, is integrable, and so there
is no fj f to which f; fn can converge (see homework problem 7.3.7).

What else can go wrong?

Example. For each n € N, the function f, : [0,1] — R defined by

fn(x) =

n if0<x<l1/n,
0 ifz=0o0rl/n<x<l,

has two discontinuities and so is integrable with

/Olfnzl.



The pointwise limit of f, is f(z) =0, « € [0, 1], for which

/Olf:o.
/Olfn—>17é/01f:0.

Pointwise convergence is insufficient to get the result.

Thus we have that

Theorem 7.4.4. Let f, be a sequence of functions defined on [a, b] converging pointwise
to f on [a,b]. If f, — f uniformly on [a,b], and each f, is integrable on [a, b], then f is

integrable and
b b
[n [

Proof. We showed in a Homework Problem (Exercise 7.2.5) that if each f,, is integrable
and f, — f uniformly that f is integrable.

To show the convergence of the integrals, we consider

[»=[1

which we want to show is smaller than e for all sufficiently large n.

Since f,, and f are integrable, then f,, — f is integrable, and by the algebraic rules of

integration we have
/abfn—/abf‘ _ /ab(fn—f)‘

S/ablfn—f!-

By the uniform convergence of f, to f, there exists N € N such that for all n > N we
have

€

b—a

|fo(2) = flz)] <
for all « € [a,b].
Thus we have for all n > N that

/ab\fn—f|§/abbja=6-

Putting it all together we have for every e > 0 the existence of N € N such that for all

n > N there holds \ ,
/fn_/ f

< €.




This says that the sequence of numbers fab fn converges to the number fab f, or that

/abfﬁ/abf

in other words. O

Recall that we integrated a power series term by term to get the integral of the power
series.

We can now prove that this is true.

Theorem. Let A be the interval of convergence for a power series >, axz®. Then for

la,b] C A, we have
b oo oo b
[ S aat =3 [t
@ k=0 k=0 "¢

Proof. The interval [a,b] C A is compact, so that by Theorem 6.5.5, the power series
converges uniformly on [a, b].

Each partial sum f,(z) = >_,_, axz" is integrable because it is a polynomial.

By Theorem 7.4.4 the power series f(z) =Y -, apz* is integrable on [a, ] and

b b
lim fn = / f.
n—oo a a
Set

b n
bk :/ akxk, Sp — E bk
@ k=0

Then
b b
/ Zak:ﬂk:/ f [Definition of f]
a k=0 a

= lim [ f.(z) [Theorem 7.4.4]

n—oo a
b n
= lim Zakxk [Definition of f,]
n—oo a =0
n_ b
= ILm Z / arz”® [Integral of Finite sum]
k=09

= lim s,, [Defintion of s,).
n—oo

Hence the sequence of partial sums (s,) converges, giving
p o0 00 00 b
k_ 1 _ _ k
arx” = lim s, = b, = apx”,
n—oo
¢ k=0 k=0 k=07

which is the desired result. O



