Final Exam Review Solutions, Math 341

Winter 2014

DISCLAIMER: The solutions provided are not necessarily the unique solution to the problem.

1. Arrange the sets of points in an array as follows:

$$
\begin{aligned}
& (1,1)(1,2)(1,3)(1,4) \cdots \\
& (2,1)(2,2)(2,3)(2,4) \cdots \\
& (3,1)(3,2)(3,3)(3,4) \cdots \\
& (4,1)(4,2)(4,3)(4,4) \cdots
\end{aligned}
$$

Then establish a bijection between \mathbb{N} and the elements of the set as follows:

$$
\begin{aligned}
& 1 \mapsto(1,1) \\
& 2 \mapsto(2,1) \\
& 3 \mapsto(1,2) \\
& 4 \mapsto(3,1) \\
& 5 \mapsto(2,2)
\end{aligned}
$$

and continue in a similar fashion, moving along parallel diagonal lines. This gives the required set is countable.
2. The limit is certainly zero. To prove this, given $\varepsilon>0$, set $N>\sqrt{\frac{2}{\varepsilon}}$. Then, for $n>N$, we have

$$
\left|a_{n}-0\right|=\left|\frac{\sin (n)+1}{n^{2}}\right| \leq\left|\frac{\sin (n)}{n^{2}}\right|+\left|\frac{1}{n^{2}}\right| \leq\left|\frac{1}{n^{2}}\right|+\left|\frac{1}{n^{2}}\right|=\left|\frac{2}{n^{2}}\right|<\frac{2}{\left(\sqrt{\frac{2}{\varepsilon}}\right)^{2}}=\varepsilon
$$

as needed.
3. This converges by comparison:

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}-2} \leq \sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}}=\sum_{n=1}^{\infty} \frac{1}{n^{2.5}}
$$

which converges by the p-test.
4. Let $c \in A$ be arbitrary. Then $f(c)>0$. Set $\varepsilon=f(c)$. Then, since $f(x)$ is continuous, there is some δ so that if $|x-c|<\delta$, then $|f(x)-f(c)|<\varepsilon / 2$. So $|x-c|<\delta$ implies that $f(x)$ is within $\varepsilon / 2$ of $f(c)$, so $f(x)$ must also be positive. So the entire interval $|x-c|<\delta$ must be contained in A as well. So every point $c \in A$ has an interval about it contained in A. Hence, A is open.
5. Since P and Q are perfect, they are both closed and contain no isolated points. The finite union of closed sets is closed, so $P \cup Q$ is also closed. Also, for any point x of $P \cup Q$, either $x \in P$ or $x \in Q$. Without loss of generality, suppose $x \in P$. Since P contains no isolated points, $V_{\varepsilon}(x)$ must contain a point of P other than x. So $V_{\varepsilon}(x)$ must contain a point of $P \cup Q$ other than x, so $P \cup Q$ contains no isolated points. Hence, $P \cup Q$ is perfect.

For the second part, note that one perfect set by itself is trivially perfect, and for perfect sets P_{1} and P_{2}, we know that $P_{1} \cup P_{2}$ is perfect by the above argument. Suppose now inductively that

$$
P_{1} \cup \ldots \cup P_{n}
$$

is perfect. We wish to show the union of $n+1$ perfect sets is perfect. We then have that

$$
P_{1} \cup \ldots \cup P_{n} \cup P_{n+1}=\left(P_{1} \cup \ldots \cup P_{n}\right) \cup P_{n+1}
$$

which is the union of two perfect sets, and is therefore perfect by the first argument.

Lastly, consider the sets $P_{n}=\left[0,2-\frac{1}{n}\right]$. Each of these is certainly perfect, but their union is $[0,2)$, which is not.
6. We define two sequences:

$$
\begin{aligned}
x_{n} & =\left\{\frac{1}{\pi / 2}, \frac{1}{5 \pi / 2}, \frac{1}{9 \pi / 2}, \ldots\right\}, \\
y_{n} & =\left\{\frac{1}{3 \pi / 2}, \frac{1}{7 \pi / 2}, \frac{1}{11 \pi / 2}, \ldots\right\} .
\end{aligned}
$$

Then $\sin \left(1 / x_{n}\right)=1$ for all n, and $\sin \left(1 / y_{n}\right)=-1$ for all n. Since both x_{n} and y_{n} converge to zero, and

$$
\lim _{n \rightarrow \infty} \sin \left(\frac{1}{x_{n}}\right) \neq \lim _{n \rightarrow \infty} \sin \left(\frac{1}{y_{n}}\right),
$$

we know that the limit as $x \rightarrow 0$ does not exist.
7. By the mean value theorem, for two points x and y where (WLOG) $x<y$, we have

$$
f^{\prime}(c)=\frac{f(y)-f(x)}{y-x}
$$

for some $c \in(x, y)$. We can compute

$$
f^{\prime}(x)=1-\sin (x)
$$

, and so we know that $\left|f^{\prime}(x)\right| \leq 2$ for all x. We must then have

$$
\left|\frac{f(y)-f(x)}{y-x}\right| \leq 2
$$

which gives

$$
\left.\left|\frac{f(y)-f(x)}{\mid} \leq 2\right| y-x \right\rvert\,
$$

Now, given $\varepsilon>0$, set $\delta=\varepsilon / 2$. Then if $|y-x|<\delta$,

$$
|f(y)-f(x)| \leq 2|y-x|<2 \delta=2 \frac{\varepsilon}{2}=\varepsilon
$$

8. First, we show that a root exists. Since $f(x)$ is a polynomial, it is continuous, so the intermediate value theorem applies. We find that $f(-1)=-1$ and $f(0)=1$, so there is some $c \in(-1,0)$ which satisfies $f(c)=0$. So there is at least one root of the equation.

Next, suppose there are two (or more) roots of the equation. Then there exist x_{1} and x_{2} with $f\left(x_{1}\right)=$ $f\left(x_{2}\right)=0$ and $x_{1} \neq x_{2}$. Then, since $f(x)$ is differentiable, the mean value theorem applies. So we must have that

$$
\frac{f\left(x_{1}\right)-f\left(x_{2}\right)}{x_{1}-x_{2}}=f^{\prime}(c)
$$

for some c between x_{1} and x_{2}. Since $f\left(x_{1}\right)=f\left(x_{2}\right)=0$, this means that $f^{\prime}=0$ at some point. But we know that $f^{\prime}(x)=5 x^{4}+1$ can never be zero, so two or more roots are impossible. So there can only be one root.
9. Since differentiability implies continuity, the only point at which $f(x)$ can be differentiable is at $x=0$, because $f(x)$ is discontinuous at every other point. To compute $f^{\prime}(0)$, we use the definition

$$
f^{\prime}(0)=\lim _{x \rightarrow 0} \frac{f(x)-f(0)}{x-0}=\lim x \rightarrow 0 \frac{f(x)}{x} .
$$

From the definition of f, we know that

$$
\lim x \rightarrow 0 \frac{0}{x} \leq \lim x \rightarrow 0 \frac{f(x)}{x} \leq \lim x \rightarrow 0 \frac{x^{2}}{x} .
$$

Both of the outer limits are zero, so by the squeeze theorem (or order limit theorem applied twice), we know that the center limit must be zero as well, so $f^{\prime}(0)=0$.
10. Notice that for any fixed value of x, we know that $x / n \rightarrow 0$ as $n \rightarrow \infty$. So x / n lies within the interval $(-1,1)$ for sufficiently large n. But if $x / n \in(-1,1)$, then $|x / n|^{n} \leq|x / n|$ for any $n \in \mathbb{N}$. This means that

$$
\lim _{n \rightarrow \infty} 0 \leq \lim _{n \rightarrow \infty}|x / n|^{n} \leq \lim _{n \rightarrow \infty}|x / n| .
$$

Since the outer two limits go to zero, it must be true that $|x / n|^{n}$ approaches zero as well. But this means that $(x / n)^{n}$ must approach zero as $n \rightarrow \infty$. So $f_{n}(x)$ approaches the function $f(x)$ that is zero everywhere.

This convergence is not uniform. In order for the convergence to be uniform, we would need to produce a natural number N so that for a given $\varepsilon>0,\left|f_{n}(x)-0\right|<\varepsilon$ for $n>N$. But each function $f_{n}(x)$ has arbitrarily large points for large enough x. So it is not possible to get a uniform bound on the functions, so the convergence is not uniform.
11. First, we note that

$$
f_{n}^{\prime}(x)=\frac{1-n x^{2}}{\left(1+n x^{2}\right)^{2}}
$$

and that $f_{n}^{\prime}(x)=0$ when $x=\frac{1}{\sqrt{n}}$. Moreover, $f_{n}^{\prime}(x)>0$ when $x<\frac{1}{\sqrt{n}}$ and $f_{n}^{\prime}(x)<0$ when $x>\frac{1}{\sqrt{n}}$, so the value of $f_{n}(x)$ at $x=\frac{1}{\sqrt{n}}$ is a maximum. We find that $f_{n}(1 / \sqrt{n})=\frac{1}{2 \sqrt{n}}$ for any given n.

By inspection, we guess that $f_{n}(x)$ will converge to the zero function. To show this, given $\varepsilon>0$, set $N=1 / 4 \varepsilon^{2}$. Then for $n>N$, we have

$$
\left|f_{n}(x)-0\right|=\left|\frac{x}{1+n x^{2}}\right| \leq\left|\frac{1}{2 \sqrt{n}}\right|<\left|\frac{1}{\frac{2}{2 \varepsilon}}\right|=\varepsilon
$$

as needed.

Next, from the definition of $f_{n}^{\prime}(x)$ we have above, expanding the denominator gives us

$$
f_{n}^{\prime}(x)=\frac{1-n x^{2}}{1+2 n x^{2}+n^{2} x^{4}}
$$

Since n has a higher power in the denominator, we know that $f_{n}^{\prime}(x)$ will approach zero for any x as $n \rightarrow \infty$. So the limit function $g(x)=0$ for all x.

Lastly, since $f(x)=0$, we have that $f^{\prime}(x)=0$, and so $f^{\prime}=g$ in this case.

NOTE: This generally does not have to be true. Review homework problem 6.3.2 and Theorem 6.3.3 for a bit more detail on this.
12. We use the ratio test to find the interval of convergence. The calculation is as follows:

$$
\lim _{n \rightarrow \infty}\left|\frac{a_{n+1}}{a_{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x^{n+1}}{(n+1)!} \cdot \frac{n!}{x^{n}}\right|=\lim _{n \rightarrow \infty}\left|\frac{x}{n+1}\right|=0 .
$$

Since this limit is less than 1 for all x, we know that the series converges everywhere.

Next, let K be a compact set in \mathbb{R}. Then K is closed and bounded, so there is some R so that $|x|<R$ for all $x \in K$. Set $M_{n}=\frac{R^{n}}{n!}$. Then, for any $x \in K$, we know that

$$
\frac{x^{n}}{n!} \leq M_{n}
$$

Since

$$
\sum_{n=0}^{\infty} M_{n}
$$

converges (use the above result or use the ratio test again), then by the Weirstrass M-test, the power series converges uniformly on K.
13. We start with a known power series:

$$
\frac{1}{1-x}=\sum_{n=0}^{\infty} x^{n}
$$

Substituting $x=-y^{2}$ gives

$$
\frac{1}{1+y^{2}}=\sum_{n=0}^{\infty}\left(-y^{2}\right)^{n}=\sum_{n=0}^{\infty}(-1)^{n} y^{2 n}
$$

We recognize the left term as the derivative of $\tan ^{-1}(y)$. We integrate with respect to y to find

$$
\tan ^{-1}(y)=\sum_{n=0}^{\infty} \frac{(-1)^{n} y^{2 n+1}}{2 n+1}+C
$$

for some constant C. We can find C immediately by plugging in $y=0$. This gives $0=0+C$, and so $C=0$. Changing the variable back to x gives the needed power series:

$$
\tan ^{-1}(x)=\sum_{n=0}^{\infty} \frac{(-1)^{n} x^{2 n+1}}{2 n+1}
$$

To find the interval of convergence, we again apply the ratio test:

$$
\lim _{n \rightarrow \infty}\left|\frac{(-1)^{n+1} x^{2 n+3}}{2 n+3} \cdot \frac{2 n+1}{(-1)^{n} x^{2 n+1}}\right|=\left|x^{2}\right| .
$$

If we require this to be less than 1 , we get the interval $(-1,1)$. The final remaining step is to check the endpoints. For this, if we plug in $x=1$, we get the sum

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n} 1^{2 n+1}}{2 n+1}=\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

which converges by the alternating series test. For $x=-1$, since $2 n+1$ is always odd, we have

$$
\sum_{n=0}^{\infty} \frac{(-1)^{n}(-1)^{2 n+1}}{2 n+1}=-\sum_{n=0}^{\infty} \frac{(-1)^{n}}{2 n+1}
$$

which converges again by the alternating series test. So the interval of convergence is $[-1,1]$.
14. A picture really helps for this - you should draw the sine curve here.

To compute the upper sums, note that on the intervals $[0, \pi / 3]$ and $[2 \pi / 3, \pi]$, the maximum value of $f(x)$ is $\sqrt{3} / 2$, and on $[\pi / 3,2 \pi / 3]$, the maximum value is 1 . So $U(f, P)=(\pi / 3)(\sqrt{3} / 2+1+\sqrt{3} / 2)$. Also (see picture), we find the minimum values of f on the intervals $[0, \pi / 3]$ and $[2 \pi / 3, \pi]$ are zero, and the minimum value of f on $[\pi / 3,2 \pi / 3]$ is $\sqrt{3} / 2$, so $L(f, P)=(\pi / 3)(0+\sqrt{3} / 2+0)$.

Notice that P^{\prime} is a refinement of P, and so we will have that

$$
U\left(f, P^{\prime}\right) \leq U(f, P) \text { and } L\left(f, P^{\prime}\right) \geq L(f, P)
$$

15. To compute this, let $f(x)=e^{-x^{2}}$, and let $F(x)$ be the antiderivative (so $F^{\prime}=f$). Even though we can't directly compute F, we can evaluate the integral in terms of F. This gives us

$$
\frac{d}{d x} \int_{x^{2}}^{x^{3}} e^{-t^{2}} d t=\frac{d}{d x}\left(F\left(x^{3}\right)-F\left(x^{2}\right)\right)
$$

Now, using the chain rule, we find the answer:

$$
\frac{d}{d x}\left(F\left(x^{3}\right)-F\left(x^{2}\right)\right)=f\left(x^{3}\right) \cdot 3 x^{2}-f\left(x^{2}\right) \cdot 2 x=3 x^{2} e^{-x^{6}}-2 x e^{-x^{4}}
$$

16. The statement is false. A good counterexample comes by letting $I=[0,1]$ and $f_{n}(x)=x^{n}$. Then we can compute

$$
\int_{0}^{1} f_{n}(x) d x=\int_{0}^{1} x^{n} d x=\left.x^{n+1}\right|_{0} ^{1}=\frac{1}{n+1}
$$

and so

$$
\int_{0}^{1} f_{n}(x) d x \rightarrow 0
$$

However, we know that $f_{n}(x)$ converges to a function f that is zero on $[0,1)$ and one when $x=1$, so $f(x) \neq 0$ for all x.
17. The statement is false. An easy counterexample is to let the function $f(x)=-e^{x}$. Then $f(x)<0$ for all x. By the fundamental theorem of calculus, we have that $g^{\prime}(x)=f(x)<0$ for all x, so g is actually decreasing.

