Final Exam Review Solutions, Math 341
Winter 2014

DISCLAIMER: The solutions provided are not necessarily the unique solution to the problem.

1. Arrange the sets of points in an array as follows:

(1,1)(1,2)(1,3)(1,4) -
(2,1)(2,2)(2,3)(2,4)- -
(3,1)(3,2)(3,3)(3,4) ---
(4,1)(4,2)(4,3)(4,4) -

1 (1,1)
2+ (2,1)
3 (1,2)
4+ (3,1)
5+—1(2,2)

and continue in a similar fashion, moving along parallel diagonal lines. This gives the required set
is countable.

2. The limit is certainly zero. To prove this, given € > 0, set N > \/g . Then, for n > N, we have

sin(n) + 1 sin(n) 1 1 1 2 2
w0 = "0 < < L ] = N
(V%)
as needed.
3. This converges by comparison:
y Vi oyVi_y L
n=1 n =2 n=1 n’ n=1" B

which converges by the p-test.

4. Let ¢ € A be arbitrary. Then f(c) > 0. Set € = f(c). Then, since f(x) is continuous, there is some &
so that if |x —c| < §, then | f(x) — f(c)| < €/2. So |x — ¢| < & implies that f(x) is within €/2 of f(c),
so f(x) must also be positive. So the entire interval |x — ¢| < § must be contained in A as well. So
every point ¢ € A has an interval about it contained in A. Hence, A is open.

5. Since P and Q are perfect, they are both closed and contain no isolated points. The finite union of
closed sets is closed, so PUQ is also closed. Also, for any point x of PUQ, either x € P or x € Q.
Without loss of generality, suppose x € P. Since P contains no isolated points, Ve(x) must contain
a point of P other than x. So V¢(x) must contain a point of PU Q other than x, so PUQ contains no
isolated points. Hence, PU Q is perfect.



For the second part, note that one perfect set by itself is trivially perfect, and for perfect sets P; and
P>, we know that P; U P, is perfect by the above argument. Suppose now inductively that

PiU...UP,
is perfect. We wish to show the union of n + 1 perfect sets is perfect. We then have that
PIULUPUP = (Pl U... UPn) UP+1

which is the union of two perfect sets, and is therefore perfect by the first argument.

Lastly, consider the sets P, = [0,2 — %] Each of these is certainly perfect, but their union is [0,2),
which is not.

. We define two sequences:

Lo 1
"\ wm/275m/279m /27

11
=\ 3r/2 T2 1im/2

Then sin(1/x,) = 1 for all n, and sin(1/y,) = —1 for all n. Since both x, and y, converge to zero,

and
.. (1 .. (1
limsin|{ — ) # limsin | — |,
n—eo Xn n—soo Vi

we know that the limit as x — 0 does not exist.

. By the mean value theorem, for two points x and y where (WLOG) x < y, we have

/ _f()’)_f(x)
f(C)——y_

X

for some ¢ € (x,y). We can compute

f'(x) =1 —sin(x)

, and so we know that |f’(x)| < 2 for all x. We must then have

‘f(y)—f(X) _
y=x |77
which gives

‘f(y)_f(x) §2\y—x|

Now, given € > 0, set § = €/2. Then if |y — x| < 9,

€

fO) = F W) <2y —x <28 =27

= €.

. First, we show that a root exists. Since f(x) is a polynomial, it is continuous, so the intermediate
value theorem applies. We find that f(—1) = —1 and f(0) = 1, so there is some ¢ € (—1,0) which
satisfies f(c) = 0. So there is at least one root of the equation.



10.

11.

Next, suppose there are two (or more) roots of the equation. Then there exist x; and x, with f(x;) =
f(x2) =0 and x; # x,. Then, since f(x) is differentiable, the mean value theorem applies. So we

must have that
flxr) = fx2)
X1 —X2

/
=f(c)
for some ¢ between x; and x,. Since f(x;) = f(x2) = 0, this means that f/ = 0 at some point. But
we know that f’(x) = 5x* + 1 can never be zero, so two or more roots are impossible. So there can

only be one root.

. Since differentiability implies continuity, the only point at which f(x) can be differentiable is at

x =0, because f(x) is discontinuous at every other point. To compute f'(0), we use the definition

— (0
£(0) = tim O =SO o/
x—0 x—0 X
From the definition of f, we know that
2
fimax - 02 < limx — 07 ™) < fimx s 0%
X X X

Both of the outer limits are zero, so by the squeeze theorem (or order limit theorem applied twice),
we know that the center limit must be zero as well, so f/(0) = 0.

Notice that for any fixed value of x, we know that x/n — 0 as n — oo. So x/n lies within the interval
(—1,1) for sufficiently large n. Butif x/n € (—1,1), then |x/n|"* < |x/n| for any n € N. This means
that

lim 0 < lim |x/n|" < lim |x/n|.

n—oo n—oo n—oo
Since the outer two limits go to zero, it must be true that |x/n|" approaches zero as well. But this
means that (x/n)" must approach zero as n — oo. So f,(x) approaches the function f(x) that is zero
everywhere.

This convergence is not uniform. In order for the convergence to be uniform, we would need to
produce a natural number N so that for a given € > 0, |f,(x) — 0| < € for n > N. But each function
fn(x) has arbitrarily large points for large enough x. So it is not possible to get a uniform bound on
the functions, so the convergence is not uniform.

First, we note that

1 —nx?
/() —
fn(x) - (1 +nx2)27
and that f; (x) = 0 when x = \/Lﬁ Moreover, f;(x) > 0 when x < \/Lﬁ and f,(x) <0 when x > \/Lﬁ SO
the value of f,(x) atx = \/Lﬁ is a maximum. We find that f,,(1/y/n) = ﬁ for any given n.

By inspection, we guess that f,(x) will converge to the zero function. To show this, given € > 0, set
N = 1/4€2. Then for n > N, we have

1

X
1 + nx?

< =€

109 -01 |

S ’

1
2y/n

2
2e

as needed.
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Next, from the definition of f;(x) we have above, expanding the denominator gives us

1 —nx?

/ _
Falx) = 1 4+ 2nx2 +n2x*"

Since n has a higher power in the denominator, we know that f; (x) will approach zero for any x as
n — oo. So the limit function g(x) = 0 for all x.

Lastly, since f(x) = 0, we have that f’(x) =0, and so f’ = g in this case.

NOTE: This generally does not have to be true. Review homework problem 6.3.2 and Theorem
6.3.3 for a bit more detail on this.

We use the ratio test to find the interval of convergence. The calculation is as follows:

xn+1 n!

(n+1)! x

an+1
an

lim

n—yoo

n—oo

X
= lim

n—oo |+ 1
Since this limit is less than 1 for all x, we know that the series converges everywhere.

Next, let K be a compact set in R. Then K is closed and bounded, so there is some R so that |x| < R
forallx € K. Set M,, = 1;—';. Then, for any x € K, we know that

Since

converges (use the above result or use the ratio test again), then by the Weirstrass M-test, the power
series converges uniformly on K.

We start with a known power series:

Substituting x = —y? gives

— =
1 +y n=0 n=0
We recognize the left term as the derivative of tan~!(y). We integrate with respect to y to find

(_l)nyZn-H

C
2n+1 +

() = Y
n=0

for some constant C. We can find C immediately by plugging in y = 0. This gives 0 = 0+ C, and so
C = 0. Changing the variable back to x gives the needed power series:

oo (_1)nx2n+1

tan~ ! (x) = il

n=0



To find the interval of convergence, we again apply the ratio test:

) (_1)n+1x2n+3 2n+ 1
lim .
n—eo|  2n+3 (—1)nx2ntl

2
= |-

If we require this to be less than 1, we get the interval (—1,1). The final remaining step is to check
the endpoints. For this, if we plug in x = 1, we get the sum

00 ( 1) 12n+1 o0
2n+1 Z’2n—f—1

n=0
which converges by the alternating series test. For x = —1, since 2n 41 is always odd, we have
i (_1)n(_1)2n+1 B 00 (_1)n
= 2n+l &+l

which converges again by the alternating series test. So the interval of convergence is [—1, 1].

14. A picture really helps for this — you should draw the sine curve here.

15.

16.

17.

To compute the upper sums, note that on the intervals [0, /3] and [27t/3, 7|, the maximum value of
f(x)is v/3/2, and on [r/3, 27 /3], the maximum value is 1. So U(f,P) = (1/3)(v/3/2+1++/3/2).
Also (see picture), we find the minimum values of f on the intervals [0,7t/3] and [2t/3, 7] are zero,
and the minimum value of f on [/3,27/3] is v/3/2, so L(f,P) = (x/3)(0++/3/2+0).

Notice that P’ is a refinement of P, and so we will have that
U(f,P') <U(f,P) and L(f,P') > L(f,P).

To compute this, let f(x) = e, and let F (x) be the antiderivative (so F' = f). Even though we
can’t directly compute F', we can evaluate the integral in terms of F'. This gives us

d (7 o d 3 2
5/)@ e dr =L (F(3)— F(x?)).
Now, using the chain rule, we find the answer:
4

— (F(x3) — F(xz)) = f(x}) 3% — f(x?) 2x = 3™ —2xe .

The statement is false. A good counterexample comes by letting / = [0, 1] and f,,(x) = x". Then we

can compute
1 1 1
[ e [ gtz L

/Olfn(x) dx — 0.

However, we know that f,(x) converges to a function f that is zero on [0, 1) and one when x = 1, so
f(x) # 0 for all x.

and so

The statement is false. An easy counterexample is to let the function f(x) = —e*. Then f(x) <0
for all x. By the fundamental theorem of calculus, we have that g’(x) = f(x) < 0 for all x, so g is
actually decreasing.



