
Final Exam Review Solutions, Math 341
Winter 2014

DISCLAIMER: The solutions provided are not necessarily the unique solution to the problem.

1. Arrange the sets of points in an array as follows:

(1,1)(1,2)(1,3)(1,4) · · ·

(2,1)(2,2)(2,3)(2,4) · · ·

(3,1)(3,2)(3,3)(3,4) · · ·

(4,1)(4,2)(4,3)(4,4) · · ·

Then establish a bijection between N and the elements of the set as follows:

1 7→ (1,1)
2 7→ (2,1)
3 7→ (1,2)
4 7→ (3,1)
5 7→ (2,2)

and continue in a similar fashion, moving along parallel diagonal lines. This gives the required set
is countable.

2. The limit is certainly zero. To prove this, given ε > 0, set N >
√

2
ε
. Then, for n > N, we have

|an−0|=
∣∣∣∣sin(n)+1

n2

∣∣∣∣≤ ∣∣∣∣sin(n)
n2

∣∣∣∣+ ∣∣∣∣ 1
n2

∣∣∣∣≤ ∣∣∣∣ 1
n2

∣∣∣∣+ ∣∣∣∣ 1
n2

∣∣∣∣= ∣∣∣∣ 2
n2

∣∣∣∣< 2(√
2
ε

)2 = ε

as needed.

3. This converges by comparison:

∞

∑
n=1

√
n

n3−2
≤

∞

∑
n=1

√
n

n3 =
∞

∑
n=1

1
n2.5

which converges by the p-test.

4. Let c ∈ A be arbitrary. Then f (c)> 0. Set ε = f (c). Then, since f (x) is continuous, there is some δ

so that if |x−c|< δ, then | f (x)− f (c)|< ε/2. So |x−c|< δ implies that f (x) is within ε/2 of f (c),
so f (x) must also be positive. So the entire interval |x− c| < δ must be contained in A as well. So
every point c ∈ A has an interval about it contained in A. Hence, A is open.

5. Since P and Q are perfect, they are both closed and contain no isolated points. The finite union of
closed sets is closed, so P∪Q is also closed. Also, for any point x of P∪Q, either x ∈ P or x ∈ Q.
Without loss of generality, suppose x ∈ P. Since P contains no isolated points, Vε(x) must contain
a point of P other than x. So Vε(x) must contain a point of P∪Q other than x, so P∪Q contains no
isolated points. Hence, P∪Q is perfect.



For the second part, note that one perfect set by itself is trivially perfect, and for perfect sets P1 and
P2, we know that P1∪P2 is perfect by the above argument. Suppose now inductively that

P1∪ ...∪Pn

is perfect. We wish to show the union of n+1 perfect sets is perfect. We then have that

P1∪ ...∪Pn∪Pn+1 = (P1∪ ...∪Pn)∪Pn+1

which is the union of two perfect sets, and is therefore perfect by the first argument.

Lastly, consider the sets Pn = [0,2− 1
n ]. Each of these is certainly perfect, but their union is [0,2),

which is not.

6. We define two sequences:

xn =

{
1

π/2
,

1
5π/2

,
1

9π/2
, ...

}
,

yn =

{
1

3π/2
,

1
7π/2

,
1

11π/2
, ...

}
.

Then sin(1/xn) = 1 for all n, and sin(1/yn) = −1 for all n. Since both xn and yn converge to zero,
and

lim
n→∞

sin
(

1
xn

)
6= lim

n→∞
sin
(

1
yn

)
,

we know that the limit as x→ 0 does not exist.

7. By the mean value theorem, for two points x and y where (WLOG) x < y, we have

f ′(c) =
f (y)− f (x)

y− x

for some c ∈ (x,y). We can compute

f ′(x) = 1− sin(x)

, and so we know that | f ′(x)| ≤ 2 for all x. We must then have∣∣∣∣ f (y)− f (x)
y− x

∣∣∣∣≤ 2,

which gives

| f (y)− f (x)
|

≤ 2|y− x|.

Now, given ε > 0, set δ = ε/2. Then if |y− x|< δ,

| f (y)− f (x)| ≤ 2|y− x|< 2δ = 2
ε

2
= ε.

8. First, we show that a root exists. Since f (x) is a polynomial, it is continuous, so the intermediate
value theorem applies. We find that f (−1) =−1 and f (0) = 1, so there is some c ∈ (−1,0) which
satisfies f (c) = 0. So there is at least one root of the equation.



Next, suppose there are two (or more) roots of the equation. Then there exist x1 and x2 with f (x1) =
f (x2) = 0 and x1 6= x2. Then, since f (x) is differentiable, the mean value theorem applies. So we
must have that

f (x1)− f (x2)

x1− x2
= f ′(c)

for some c between x1 and x2. Since f (x1) = f (x2) = 0, this means that f ′ = 0 at some point. But
we know that f ′(x) = 5x4 +1 can never be zero, so two or more roots are impossible. So there can
only be one root.

9. Since differentiability implies continuity, the only point at which f (x) can be differentiable is at
x = 0, because f (x) is discontinuous at every other point. To compute f ′(0), we use the definition

f ′(0) = lim
x→0

f (x)− f (0)
x−0

= limx→ 0
f (x)

x
.

From the definition of f , we know that

limx→ 0
0
x
≤ limx→ 0

f (x)
x
≤ limx→ 0

x2

x
.

Both of the outer limits are zero, so by the squeeze theorem (or order limit theorem applied twice),
we know that the center limit must be zero as well, so f ′(0) = 0.

10. Notice that for any fixed value of x, we know that x/n→ 0 as n→∞. So x/n lies within the interval
(−1,1) for sufficiently large n. But if x/n ∈ (−1,1), then |x/n|n ≤ |x/n| for any n ∈ N. This means
that

lim
n→∞

0≤ lim
n→∞
|x/n|n ≤ lim

n→∞
|x/n|.

Since the outer two limits go to zero, it must be true that |x/n|n approaches zero as well. But this
means that (x/n)n must approach zero as n→ ∞. So fn(x) approaches the function f (x) that is zero
everywhere.

This convergence is not uniform. In order for the convergence to be uniform, we would need to
produce a natural number N so that for a given ε > 0, | fn(x)−0| < ε for n > N. But each function
fn(x) has arbitrarily large points for large enough x. So it is not possible to get a uniform bound on
the functions, so the convergence is not uniform.

11. First, we note that

f ′n(x) =
1−nx2

(1+nx2)2 ,

and that f ′n(x) = 0 when x = 1√
n . Moreover, f ′n(x)> 0 when x < 1√

n and f ′n(x)< 0 when x > 1√
n , so

the value of fn(x) at x = 1√
n is a maximum. We find that fn(1/

√
n) = 1

2
√

n for any given n.

By inspection, we guess that fn(x) will converge to the zero function. To show this, given ε > 0, set
N = 1/4ε2. Then for n > N, we have

| fn(x)−0|=
∣∣∣∣ x
1+nx2

∣∣∣∣≤ ∣∣∣∣ 1
2
√

n

∣∣∣∣<
∣∣∣∣∣ 1

2
2ε

∣∣∣∣∣= ε

as needed.



Next, from the definition of f ′n(x) we have above, expanding the denominator gives us

f ′n(x) =
1−nx2

1+2nx2 +n2x4 .

Since n has a higher power in the denominator, we know that f ′n(x) will approach zero for any x as
n→ ∞. So the limit function g(x) = 0 for all x.

Lastly, since f (x) = 0, we have that f ′(x) = 0, and so f ′ = g in this case.

NOTE: This generally does not have to be true. Review homework problem 6.3.2 and Theorem
6.3.3 for a bit more detail on this.

12. We use the ratio test to find the interval of convergence. The calculation is as follows:

lim
n→∞

∣∣∣∣an+1

an

∣∣∣∣= lim
n→∞

∣∣∣∣ xn+1

(n+1)!
· n!

xn

∣∣∣∣= lim
n→∞

∣∣∣∣ x
n+1

∣∣∣∣= 0.

Since this limit is less than 1 for all x, we know that the series converges everywhere.

Next, let K be a compact set in R. Then K is closed and bounded, so there is some R so that |x|< R
for all x ∈ K. Set Mn =

Rn

n! . Then, for any x ∈ K, we know that

xn

n!
≤Mn.

Since
∞

∑
n=0

Mn

converges (use the above result or use the ratio test again), then by the Weirstrass M-test, the power
series converges uniformly on K.

13. We start with a known power series:
1

1− x
=

∞

∑
n=0

xn.

Substituting x =−y2 gives

1
1+ y2 =

∞

∑
n=0

(−y2)n =
∞

∑
n=0

(−1)ny2n.

We recognize the left term as the derivative of tan−1(y). We integrate with respect to y to find

tan−1(y) =
∞

∑
n=0

(−1)ny2n+1

2n+1
+C

for some constant C. We can find C immediately by plugging in y = 0. This gives 0 = 0+C, and so
C = 0. Changing the variable back to x gives the needed power series:

tan−1(x) =
∞

∑
n=0

(−1)nx2n+1

2n+1
.



To find the interval of convergence, we again apply the ratio test:

lim
n→∞

∣∣∣∣(−1)n+1x2n+3

2n+3
· 2n+1
(−1)nx2n+1

∣∣∣∣= |x2|.

If we require this to be less than 1, we get the interval (−1,1). The final remaining step is to check
the endpoints. For this, if we plug in x = 1, we get the sum

∞

∑
n=0

(−1)n12n+1

2n+1
=

∞

∑
n=0

(−1)n

2n+1

which converges by the alternating series test. For x =−1, since 2n+1 is always odd, we have

∞

∑
n=0

(−1)n(−1)2n+1

2n+1
=−

∞

∑
n=0

(−1)n

2n+1
,

which converges again by the alternating series test. So the interval of convergence is [−1,1].

14. A picture really helps for this – you should draw the sine curve here.

To compute the upper sums, note that on the intervals [0,π/3] and [2π/3,π], the maximum value of
f (x) is

√
3/2, and on [π/3,2π/3], the maximum value is 1. So U( f ,P) = (π/3)(

√
3/2+1+

√
3/2).

Also (see picture), we find the minimum values of f on the intervals [0,π/3] and [2π/3,π] are zero,
and the minimum value of f on [π/3,2π/3] is

√
3/2, so L( f ,P) = (π/3)(0+

√
3/2+0).

Notice that P′ is a refinement of P, and so we will have that

U( f ,P′)≤U( f ,P) and L( f ,P′)≥ L( f ,P).

15. To compute this, let f (x) = e−x2
, and let F(x) be the antiderivative (so F ′ = f ). Even though we

can’t directly compute F , we can evaluate the integral in terms of F . This gives us

d
dx

∫ x3

x2
e−t2

dt =
d
dx

(
F(x3)−F(x2)

)
.

Now, using the chain rule, we find the answer:

d
dx

(
F(x3)−F(x2)

)
= f (x3) ·3x2− f (x2) ·2x = 3x2e−x6

−2xe−x4
.

16. The statement is false. A good counterexample comes by letting I = [0,1] and fn(x) = xn. Then we
can compute ∫ 1

0
fn(x) dx =

∫ 1

0
xn dx = xn+1|10 =

1
n+1

,

and so ∫ 1

0
fn(x) dx→ 0.

However, we know that fn(x) converges to a function f that is zero on [0,1) and one when x = 1, so
f (x) 6= 0 for all x.

17. The statement is false. An easy counterexample is to let the function f (x) = −ex. Then f (x) < 0
for all x. By the fundamental theorem of calculus, we have that g′(x) = f (x) < 0 for all x, so g is
actually decreasing.


