# Final Exam Review, Math 341 

Winter 2014

1. Show that the set of all points

$$
\{(x, y): x, y \in \mathbb{N}\}
$$

is countable.
2. Define

$$
a_{n}=\frac{\sin (n)+1}{n^{2}} .
$$

Find

$$
\lim _{n \rightarrow \infty} a_{n}
$$

and prove this limit is correct using the definition.
3. Determine whether

$$
\sum_{n=1}^{\infty} \frac{\sqrt{n}}{n^{3}-2}
$$

converges or diverges.
4. Suppose a function $f(x): \mathbb{R} \rightarrow \mathbb{R}$ is continuous. Define the set

$$
A=\{x \in \mathbb{R}: f(x)>0\} .
$$

Show that $A$ is open.
5. - Let $P$ and $Q$ be perfect sets. Prove that $P \cup Q$ is perfect.

- Show that the finite union of perfect sets is perfect.
- Give an example to show that the infinite union of perfect sets may not be perfect.

6. Show that

$$
\lim _{x \rightarrow 0} \sin \left(\frac{1}{x}\right)
$$

does not exist.
7. Show that

$$
f(x)=x+\cos (x)
$$

is uniformly continuous on all of $\mathbb{R}$.
8. Show that the function

$$
f(x)=x^{5}+x+1
$$

has exactly one root. That is, show that there is only one point $x_{0}$ such that $f\left(x_{0}\right)=0$.
9. For the function defined by

$$
f(x)= \begin{cases}x^{2} & : x \in \mathbb{Q} \\ 0 & : x \notin \mathbb{Q}\end{cases}
$$

show that $f(x)$ is differentiable at exactly one point, and evaluate the derivative at that point.
10. Let

$$
f_{n}(x)=\left(\frac{x}{n}\right)^{n}
$$

Show that $f_{n}(x)$ converges pointwise to the function $f(x)=0$ on all of $\mathbb{R}$. Is this convergence uniform?
11. Let

$$
f_{n}(x)=\frac{x}{1+n x^{2}}
$$

be defined on $x \in[0,1]$.

- Show $f_{n}(x)$ converges uniformly to a function $f(x)$.
- Show that $f_{n}^{\prime}(x)$ converges to a function $g(x)$.
- Show that $f^{\prime}(x)=g(x)$.

12. Show that

$$
\sum_{n=0}^{\infty} \frac{x^{n}}{n!}
$$

converges on all of $\mathbb{R}$, and that it converges uniformly on any compact subset of $\mathbb{R}$.
13. Find the power series for $\arctan x$, and find its interval of convergence.
14. For the function

$$
f(x)=\sin (x)
$$

and

$$
P=\left\{0, \frac{\pi}{3}, \frac{2 \pi}{3}, \pi\right\},
$$

- Compute $U(f, P)$ and $L(f, P)$.
- Without calculating, what happens when the points $\frac{\pi}{4}$ and $\frac{3 \pi}{4}$ are added to $P$, forming a new partition $P^{\prime}$ ?

15. Compute

$$
\frac{d}{d x} \int_{x^{2}}^{x^{3}} e^{-t^{2}} d t
$$

Explain why each step is valid.
16. Prove or give a counterexample: If $f_{n}$ is a sequence of functions on an interval $I=[a, b]$ such that $f_{n} \rightarrow f$, and

$$
\int_{a}^{b} f_{n} \rightarrow 0 \text { as } n \rightarrow \infty
$$

then $f(x)=0$ for all $x$.
17. Let $f(x)$ be a function that is monotonically increasing on the interval $[a, b]$. Define a function

$$
g(x)=\int_{a}^{x} f(t) d t
$$

for $x \in[a, b]$. Is $g(x)$ monotonically increasing? Prove or give a counterexample.

