Math 113 Exam 1 PART A RED DO NOT WRITE TWO PART

Instructions:

- Bubble your answer to the questions on the provided scantron. Use a # 2 pencil.
- Calculators are not allowed.
- Do not write on the exam. Use your own scratch paper, or part B. Scratch paper will not be saved.
- Please do not talk about the test with other students until after the last day to take the exam.

Part A: Multiple Choice Mark the correct answer on the bubble sheet provided.

- 1. A particular spring requires 12.5 ft-lbs of *work* to stretch $\frac{1}{2}$ feet from its resting position. What is the spring constant k for this spring? (Recall that Hooke's law says F = kx where F is the force exerted to stretch the spring a distance x beyond its natural length.)
 - a) 25
 b) 50
 c) 100

 d) 150
 e) 200
- 2. A 10 ft chain that weighs 4 lb per foot is hanging from the top of a 40 foot building. How much work is done in moving the chain so that all of it is sitting on the top of the building?
 - a) 50 ft-lbs
 b) 100 ft-lbs
 c) 200 ft-lbs

 d) 400 ft-lbs
 e) 1000 ft-lbs
- 3. Find the average value of $f(x) = (x+1)^3$ over the interval [-1, 1].
 - a) 2 b) 4 c) 6
 - d) 8 e) -2 f) -4

4. Find the area between $y = \frac{1}{x}$ and $y = \frac{1}{x^2}$ from x = 1 to x = 3.

- a) The area is infinite b) $\ln 3$ c) $\frac{1}{3}$
- d) $\ln(7/3)$ e) $\ln(1/3) \ln(1/9)$ f) $\ln 3 \frac{2}{3}$

Continue to Next Page

5. Which integral gives the volume of an object defined by rotating the area between y = x and $y = x^2$ about y = -1?

a)
$$\int_0^1 \pi (x^2 - x^4) dx$$
 b) $\int_0^1 \pi (x^4 - x^2) dx$ c) $\int_0^1 \pi ((x+1)^2 - (x^2+1)^2) dx$

d)
$$\int_0^1 \pi((x^2+1)^2 - (x+1)^2) dx$$
 e) $\int_0^1 \pi((x-1)^2 - (x^2-1)^2) dx$ f) $\int_0^1 \pi((x^2-1)^2 - (x-1)^2) dx$

6. Which integral could represent the volume of the solid defined by rotating the area between the curves $y = \sqrt{x}$ and y = 0 from x = 0 to x = 1 about the y - axis?

a)
$$\int_{0}^{1} 2\pi x^{2} \sqrt{x} \, dx$$

b) $\int_{0}^{1} 2\pi x \sqrt{x} \, dx$
c) $\int_{0}^{1} \pi x \, dx$
d) $\int_{0}^{1} \pi x^{2} \, dx$
e) $\int_{0}^{1} 2\pi (x-1) \sqrt{x} \, dx$
f) $\int_{0}^{1} \pi (\sqrt{x}-1)^{2} \, dx$

7. Find
$$\int_{0}^{1} \sin^{-1}(x) dx$$

a) 1 b) $\frac{\pi}{2}$ c) $\frac{\pi}{2} - 1$
d) $\frac{\pi}{2} + 1$ e) $1 - \frac{\pi}{2}$ f) None of these
8. What is $\int \sec^{3} x \, dx$?
a) $\frac{1}{2} \sec x \tan x + \frac{1}{2} \ln |\sec x + \tan x| + C$ b) $\frac{1}{2} \sec x \tan x - \frac{1}{2} \ln |\sec x + \tan x| + C$
c) $\frac{1}{2} \sec x \tan x - \frac{3}{4} \ln |\sec x + \tan x| + C$ d) $3 \sec^{3} x \tan x + C$

e)
$$3\sec^2 x \tan x + C$$
 f) None of these

9. Which substitution will allow you to find the following integral?

$$\int \frac{1}{(4+9x^2)^3} \, dx$$

a) $x = \frac{2}{3}\sin\theta$ b) $x = \frac{3}{2}\sin\theta$ c) $x = \frac{2}{3}\tan\theta$

d)
$$x = \frac{3}{2} \tan \theta$$
 e) $x = \frac{2}{3} \sec \theta$ f) $x = \frac{3}{2} \sec \theta$

g) None of these

END OF PART A