Math 113 Exam 1 PART A
 RED DO NOT WRITE TWO PART

Instructions:

- Bubble your answer to the questions on the provided scantron. Use a $\# 2$ pencil.
- Calculators are not allowed.
- Do not write on the exam. Use your own scratch paper, or part B. Scratch paper will not be saved.
- Please do not talk about the test with other students until after the last day to take the exam.

Part A: Multiple Choice Mark the correct answer on the bubble sheet provided.

1. A particular spring requires $12.5 \mathrm{ft}-\mathrm{lbs}$ of work to stretch $\frac{1}{2}$ feet from its resting position. What is the spring constant k for this spring? (Recall that Hooke's law says $F=k x$ where F is the force exerted to stretch the spring a distance x beyond its natural length.)
a) 25
b) 50
c) 100
d) 150
e) 200
2. A 10 ft chain that weighs 4 lb per foot is hanging from the top of a 40 foot building. How much work is done in moving the chain so that all of it is sitting on the top of the building?
a) $50 \mathrm{ft}-\mathrm{lbs}$
b) $100 \mathrm{ft}-\mathrm{lbs}$
c) $200 \mathrm{ft}-\mathrm{lbs}$
d) $400 \mathrm{ft}-\mathrm{lbs}$
e) $1000 \mathrm{ft}-\mathrm{lbs}$
3. Find the average value of $f(x)=(x+1)^{3}$ over the interval $[-1,1]$.
a) 2
b) 4
c) 6
d) 8
e) $\quad-2$
f) -4
4. Find the area between $y=\frac{1}{x}$ and $y=\frac{1}{x^{2}}$ from $x=1$ to $x=3$.
a) The area is infinite
b) $\ln 3$
c) $\frac{1}{3}$
d) $\ln (7 / 3)$
e) $\ln (1 / 3)-\ln (1 / 9)$
f) $\ln 3-\frac{2}{3}$
5. Which integral gives the volume of an object defined by rotating the area between $y=x$ and $y=x^{2}$ about $y=-1$?
a) $\int_{0}^{1} \pi\left(x^{2}-x^{4}\right) d x$
b) $\int_{0}^{1} \pi\left(x^{4}-x^{2}\right) d x$
c) $\int_{0}^{1} \pi\left((x+1)^{2}-\left(x^{2}+1\right)^{2}\right) d x$
d) $\int_{0}^{1} \pi\left(\left(x^{2}+1\right)^{2}-(x+1)^{2}\right) d x$
e) $\int_{0}^{1} \pi\left((x-1)^{2}-\left(x^{2}-1\right)^{2}\right) d x$
f) $\int_{0}^{1} \pi\left(\left(x^{2}-1\right)^{2}-(x-1)^{2}\right) d x$
6. Which integral could represent the volume of the solid defined by rotating the area between the curves $y=\sqrt{x}$ and $y=0$ from $x=0$ to $x=1$ about the $y-$ axis?
a) $\int_{0}^{1} 2 \pi x^{2} \sqrt{x} d x$
b) $\int_{0}^{1} 2 \pi x \sqrt{x} d x$
c) $\int_{0}^{1} \pi x d x$
d) $\int_{0}^{1} \pi x^{2} d x$
e) $\int_{0}^{1} 2 \pi(x-1) \sqrt{x} d x$
f) $\int_{0}^{1} \pi(\sqrt{x}-1)^{2} d x$
7. Find $\int_{0}^{1} \sin ^{-1}(x) d x$
a) 1
b) $\frac{\pi}{2}$
c) $\frac{\pi}{2}-1$
d) $\frac{\pi}{2}+1$
e) $1-\frac{\pi}{2}$
f) None of these
8. What is $\int \sec ^{3} x d x$?
a) $\frac{1}{2} \sec x \tan x+\frac{1}{2} \ln |\sec x+\tan x|+C$
b) $\frac{1}{2} \sec x \tan x-\frac{1}{2} \ln |\sec x+\tan x|+C$
c) $\frac{1}{2} \sec x \tan x-\frac{3}{4} \ln |\sec x+\tan x|+C$
d) $3 \sec ^{3} x \tan x+C$
e) $3 \sec ^{2} x \tan x+C$
f) None of these
9. Which substitution will allow you to find the following integral?

$$
\int \frac{1}{\left(4+9 x^{2}\right)^{3}} d x
$$

a) $x=\frac{2}{3} \sin \theta$
b) $x=\frac{3}{2} \sin \theta$
c) $x=\frac{2}{3} \tan \theta$
d) $x=\frac{3}{2} \tan \theta$
e) $x=\frac{2}{3} \sec \theta$
f) $x=\frac{3}{2} \sec \theta$
g) None of these

