Name: \qquad
Student ID: \qquad
Section: \qquad
Instructor: \qquad

Math 113
TWO PART EXAM
Exam 3 PART B
YOU CAN WRITE ON PART B
Winter 2013

Instructions for Part B:

- Calculators are not allowed.
- Simplify your answers.
- Work on scratch paper will not be graded.
- For question 11, fill in each blank. No work will be graded.
- For questions 12 through 17 , show all your work in the space provided.
- Should you have need for more space than is allotted, use the back of the page the problem is on and indicate this fact.
- Please do not discuss the exam with other students until after the last day to take the exam.

$\#$	Possible	Earned
M.C.	30	
11	13	
12	7	
$13(\mathrm{a})$	5	
$13(\mathrm{~b})$	5	
$13(\mathrm{c})$	5	
Subtotal	65	

$\#$	Possible	Earned
$14(\mathrm{a})$	5	
$14(\mathrm{~b})$	5	
$14(\mathrm{c})$	5	
15	8	
16	4	
17	8	
Subtotal	35	
Overall	100	

PART B: FREE RESPONSE

11. Fill in each blank. No work will be graded for this problem.
(a) (3 points) Find an explicit formula for the general term of the sequence.

$$
a_{1}=4, a_{2}=-2, a_{3}=1, a_{4}=-\frac{1}{2}, a_{5}=\frac{1}{4}, \ldots \quad a_{n}=
$$

\qquad
(b) (3 points) Find the limit of $a_{n}=\frac{(-1)^{n}(n+2)}{n}$ or say that it diverges.
(c) (3 points) Find the limit of $a_{n}=\sin \left(\frac{1+\pi n^{2}}{n^{2}+1}\right)$ or say that it diverges.
(d) (2 points) If a sequence is convergent then it must be monotone. True or false?
(e) (2 points) A decreasing sequence of positive terms must be convergent. True or false?
12. (7 points) Find a power series that is an antiderivative for $\frac{x}{1+x^{4}}$ on the interval $(-1,1)$.
13. (5 points each) For each series, state whether it is convergent or divergent. In the space provided, show adequate justification for your conclusion, citing any necessary series tests. POINTS WILL NOT BE AWARDED IF NO WORK IS SHOWN!!
(a) $\sum_{n=1}^{\infty}\left(\frac{3 n-1}{n+1}\right)^{n}$

Circle your conclusion:
Convergent
Divergent
(b) $\sum_{n=2}^{\infty} \frac{n!}{n^{n}}$

Circle your conclusion:

Convergent
Divergent
(c) $\sum_{n=1}^{\infty} \frac{2 n^{2}+n+3}{4 n^{3}-\sqrt{n}+1}$

Circle your conclusion:

Convergent

Divergent
14. (5 points each) For each series, state whether it is absolutely convergent, conditionally convergent, or divergent. In the space provided, show adequate justification for your conclusion, citing any necessary series tests. POINTS WILL NOT BE AWARDED IF NO WORK IS SHOWN!!
(a) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1} \sqrt{n+1}}{n}$

Circle your conclusion:
Absolutely Convergent
Conditionally Convergent
Divergent
(b) $\sum_{n=2}^{\infty}(-1)^{n+1} \frac{n+1}{\ln n}$

Circle your conclusion:
Absolutely Convergent

Conditionally Convergent

Divergent
(c) $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{(n+1)^{3}}$

Circle your conclusion:
Absolutely Convergent
Conditionally Convergent
Divergent
15. (4 points each)
(a) The series below is convergent. Find the number of terms necessary to approximate its sum to within 0.01 .

$$
\sum_{k=1}^{\infty} \frac{9}{k^{2}}
$$

(b) Use s_{3} and integrals to create a lower and upper bound for the sum of the series in part (a).
16. (4 points) The series below is convergent. Determine how many terms of the series must be added so that $\left|R_{n}\right|$ is less than 10^{-3}.

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{\sqrt{n+3}}
$$

17. (8 points) Find the interval of convergence for the power series: $\sum_{n=0}^{\infty} \frac{2^{n}(x+2)^{n}}{n+2}$
