Name:
Student ID(see bubble sheet):
Section:
Instructor:

Math 313 (Linear Algebra) Exam 3 Practice Mar 26,27,28

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
- Simplify your answers.
- Scientific calculators are allowed.
- Should you have need for more space than is allocated to answer a question, use the back of the page the problem is on and indicate this fact.
- Please do not talk about the test with other students until after the last day to take the exam.

Part I: Multiple Choice Questions: Mark all answers which are correct for each question. (4 points each.)

- 1. On \mathbb{P}_2 the linear transformation $T(p)(x) := x^2 p''(x)$ is given. Which of the following statements are true?
 - a) T is invertible.
 - c) T is onto.

- b) T has a kernel of dimension 2.
- d) The matrix of T w.r.t. the basis $B := \{1, t, t^2\}$ assumes the form
 - $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$

- e) The matrix of T w.r.t. the basis $B:=\{1,t,t^2\}$ assumes the form
 - $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

f) The matrix of T w.r.t. the basis $B := \{1, t, t^2\}$ cannot be a square matrix.

c) $\begin{bmatrix} 2 & 1 \\ 2 & -1 \end{bmatrix}$

2. Let $W = \text{Span}\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix} \right\}$. Which of the following sets of vectors span the subspace W^{\perp} ? Select all that apply:

a)
$$\left\{ \begin{bmatrix} -1\\0\\0 \end{bmatrix}, \begin{bmatrix} -1\\-1\\0 \end{bmatrix} \right\}$$

b)
$$\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

c)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

d)
$$\left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

e)
$$\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$

f)
$$\left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$$

3. Let $A = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$. Then, the matrix P that diagonalizes A is given by a) $\begin{bmatrix} 1 & 1 \\ 2 & -1 \end{bmatrix}$ b) $\begin{bmatrix} 1 & 2 \\ 1 & -1 \end{bmatrix}$

d)
$$\begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}$$
 e) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$ f) $\begin{bmatrix} -1 & 1 \\ 1 & 1 \end{bmatrix}$

Part II: Fill in the blank with the best possible answer. (4 points each.)

4. (10 points)

- (a) A matrix A is called *symmetric* if $A^T = A$. Let M denote the vector space of all symmetric 2×2 matrices. Then dim M =_____.
- (b) Fill in the matrix so that it has rank 1.

$$\begin{bmatrix} 1 & 2 \\ 2 & -4 \\ & -6 \end{bmatrix}$$

(c) Let $\{\mathbf{u}_1, \ldots, \mathbf{u}_p\}$ be an orthogonal basis for a subspace W of \mathbb{R}^n . For each \mathbf{y} in W, the weights of the linear combination

 $\mathbf{y} = c_1 \mathbf{u_1} + \dots + c_p \mathbf{u_p}$ are given by

$$c_j = ---- \qquad \text{for } j = 1, \dots, p.$$

(d) Let
$$\mathbf{y} = \begin{bmatrix} 3\\ 3\\ 3\\ 3 \end{bmatrix}$$
, and $W = \operatorname{Span} \left\{ \begin{bmatrix} 1\\ 0\\ 1\\ 0 \end{bmatrix}, \begin{bmatrix} -1\\ 1\\ 1\\ 0 \end{bmatrix} \right\}$. The distance from \mathbf{y} to W is _____.

(e) If A is an $n \times n$ matrix, **x** is a nonzero vector, and $A\mathbf{x} = \lambda \mathbf{x}$ for some scalar λ , then _____

(f) Assume A is an $n \times n$ matrix that has distinct eigenvalues $\lambda_1, \lambda_2, \ldots, \lambda_r$ with corresponding eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$. What can be said of the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r\}$?

Part III: Justify your answer and show all work for full credit.

- 5. For a real 2x2 matrix A prove or disprove by giving a counterexample that with every complex eigenvector $\mathbf{u} + \mathbf{iv}$ also its conjugate, $\mathbf{u} \mathbf{iv}$, is an eigenvector of A.
- 6. Let $T: V \to W$ be a linear transformation that is one-to-one. Prove that dim $V \leq \dim W$. Hint: take a basis $\{\mathbf{b}_1, \ldots, \mathbf{b}_n\}$ of V, and consider the set $\{T(\mathbf{b}_1), \ldots, T(\mathbf{b}_n)\}$ in W.
- 7. Can

$$F = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1 \end{bmatrix}$$

be diagonalized? If it can, find the diagonalizing matrix. Otherwise, show why it cannot.

8. Prove that for any $m \times n$ matrix A, we have $\dim(\operatorname{Nul} A)^{\perp} = \dim(\operatorname{Nul} A^T)^{\perp}$.

9. Let
$$W = \text{Span} \left\{ \begin{bmatrix} 1\\1\\-5 \end{bmatrix}, \begin{bmatrix} 2\\0\\1 \end{bmatrix} \right\}$$
. Find a basis for W^{\perp} .

- 10. Let A be a 15×20 matrix. For a particular vector **b**, the system $A\mathbf{x} = \mathbf{b}$ has 6 free variables. Can we guarantee that $A\mathbf{x} = \mathbf{b}$ always has a solution for any vector **b**? Justify your conclusion.
- 11. Prove that if A and B are similar matrices, then A and B have the same eigenvalues.

12. Let
$$W = \left\{ \begin{bmatrix} a \\ b \\ a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$$
. Use an orthogonal basis for W and the projection formula to find the closest point in W to $\mathbf{y} = \begin{bmatrix} 3 \\ 3 \\ 3 \end{bmatrix}$. Does your answer makes sense? Explain.

13. For the matrix A given by

$$A = \begin{pmatrix} 4 & 0 & 1 \\ 2 & 3 & 2 \\ 1 & 0 & 4 \end{pmatrix}$$

- (a) Find its eigenvalues and eigenvectors
- (b) Check that the eigenvalues and eigenvectors of A found in part (a) are correct by verifying that $A\mathbf{v} = \lambda \mathbf{v}$ for every eigenvalue λ and its corresponding eigenvector \mathbf{v} .

END OF EXAM