Name: \qquad
Student ID(see bubble sheet): \qquad
Section: \qquad
Instructor:

Math 313 (Linear Algebra) Exam 3 Practice

Mar 26,27,28

Instructions:

- For questions which require a written answer, show all your work. Full credit will be given only if the necessary work is shown justifying your answer.
- Simplify your answers.
- Scientific calculators are allowed.
- Should you have need for more space than is allocated to answer a question, use the back of the page the problem is on and indicate this fact.
- Please do not talk about the test with other students until after the last day to take the exam.

Part I: Multiple Choice Questions: Mark all answers which are correct for each question. (4 points each.)

1. On \mathbb{P}_{2} the linear transformation $T(p)(x):=x^{2} p^{\prime \prime}(x)$ is given. Which of the following statements are true?
a) T is invertible.
b) T has a kernel of dimension 2 .
c) T is onto.
d) The matrix of T w.r.t. the basis $B:=\left\{1, t, t^{2}\right\}$ assumes the form

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

e) The matrix of T w.r.t. the basis $B:=\left\{1, t, t^{2}\right\}$
assumes the form
f) The matrix of T w.r.t. the basis $B:=\left\{1, t, t^{2}\right\}$ cannot be a square matrix.

$$
\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

2. Let $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$. Which of the following sets of vectors span the subspace W^{\perp} ? Select all that apply:
a) $\left\{\left[\begin{array}{r}-1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ -1 \\ 0\end{array}\right]\right\}$
b) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
c) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
d) $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$
e) $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$
f) $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{r}0 \\ 0 \\ -3\end{array}\right]\right\}$
3. Let $A=\left[\begin{array}{ll}1 & 1 \\ 2 & 2\end{array}\right]$. Then, the matrix P that diagonalizes A is given by
a) $\left[\begin{array}{cc}1 & 1 \\ 2 & -1\end{array}\right]$
b) $\left[\begin{array}{cc}1 & 2 \\ 1 & -1\end{array}\right]$
c) $\left[\begin{array}{cc}2 & 1 \\ 2 & -1\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$
e) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$
f) $\left[\begin{array}{cc}-1 & 1 \\ 1 & 1\end{array}\right]$

Part II: Fill in the blank with the best possible answer. (4 points each.)
4. (10 points)
(a) A matrix A is called symmetric if $A^{T}=A$. Let M denote the vector space of all symmetric 2×2 matrices. Then $\operatorname{dim} M=$ \qquad _.
(b) Fill in the matrix so that it has rank 1.

$$
\left[\begin{array}{ccc}
1 & & 2 \\
2 & -4 & \\
& -6 &
\end{array}\right]
$$

(c) Let $\left\{\mathbf{u}_{\mathbf{1}}, \ldots, \mathbf{u}_{\mathbf{p}}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \mathbf{y} in W, the weights of the linear combination
$\mathbf{y}=c_{1} \mathbf{u}_{\mathbf{1}}+\cdots+c_{p} \mathbf{u}_{\mathbf{p}}$ are given by

$$
c_{j}=\square \quad \text { for } j=1, \ldots, p
$$

(d) Let $\mathbf{y}=\left[\begin{array}{l}3 \\ 3 \\ 3 \\ 3\end{array}\right]$, and $W=\operatorname{Span}\left\{\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{r}-1 \\ 1 \\ 1 \\ 0\end{array}\right]\right\}$. The distance from \mathbf{y} to W is \qquad
(e) If A is an $n \times n$ matrix, \mathbf{x} is a nonzero vector, and $A \mathbf{x}=\lambda \mathbf{x}$ for some scalar λ, then
(f) Assume A is an $n \times n$ matrix that has distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ with corresponding eigenvectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{r}$. What can be said of the set of vectors $\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots \mathbf{v}_{r}\right\} ?$

Part III: Justify your answer and show all work for full credit.
5. For a real 2 x 2 matrix A prove or disprove by giving a counterexample that with every complex eigenvector $\mathbf{u}+\mathbf{i v}$ also its conjugate, $\mathbf{u}-\mathbf{i v}$, is an eigenvector of A.
6. Let $T: V \rightarrow W$ be a linear transformation that is one-to-one. Prove that $\operatorname{dim} V \leq \operatorname{dim} W$. Hint: take a basis $\left\{\mathbf{b}_{1}, \ldots, \mathbf{b}_{n}\right\}$ of V, and consider the set $\left\{T\left(\mathbf{b}_{1}\right), \ldots, T\left(\mathbf{b}_{n}\right)\right\}$ in W.
7. Can

$$
F=\left[\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right]
$$

be diagonalized? If it can, find the diagonalizing matrix. Otherwise, show why it cannot.
8. Prove that for any $m \times n$ matrix A, we have $\operatorname{dim}(\operatorname{Nul} A)^{\perp}=\operatorname{dim}\left(\operatorname{Nul} A^{T}\right)^{\perp}$.
9. Let $W=\operatorname{Span}\left\{\left[\begin{array}{r}1 \\ 1 \\ -5\end{array}\right],\left[\begin{array}{l}2 \\ 0 \\ 1\end{array}\right]\right\}$. Find a basis for W^{\perp}.
10. Let A be a 15×20 matrix. For a particular vector \mathbf{b}, the system $A \mathbf{x}=\mathbf{b}$ has 6 free variables. Can we guarantee that $A \mathbf{x}=\mathbf{b}$ always has a solution for any vector \mathbf{b} ? Justify your conclusion.
11. Prove that if A and B are similar matrices, then A and B have the same eigenvalues.
12. Let $W=\left\{\left.\left[\begin{array}{l}a \\ b \\ a\end{array}\right] \right\rvert\, a, b \in \mathbb{R}\right\}$. Use an orthogonal basis for W and the projection formula to find the closest point in W to $\mathbf{y}=\left[\begin{array}{l}3 \\ 3 \\ 3\end{array}\right]$. Does your answer makes sense? Explain.
13. For the matrix A given by

$$
A=\left(\begin{array}{lll}
4 & 0 & 1 \\
2 & 3 & 2 \\
1 & 0 & 4
\end{array}\right)
$$

(a) Find its eigenvalues and eigenvectors
(b) Check that the eigenvalues and eigenvectors of A found in part (a) are correct by verifying that $A \mathbf{v}=\lambda \mathbf{v}$ for every eigenvalue λ and its corresponding eigenvector \mathbf{v}.

