Math 313 Lecture #3 §1.3: Vector Equations

Vectors. A matrix with only one column and n rows is called a **column vector**, or simply a **vector**, and is an ordered n-tuple:

$$\vec{u} = \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{bmatrix}, \ \vec{v} = \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix}, \ \text{etc.}$$

[In these notes and on the whiteboard, the notation \vec{u} will be used instead of **u** for vector.] We say that such a vector \vec{u} belongs to the set \mathbb{R}^n .

Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are **equal** when their corresponding entries are equal, i.e., $u_i = v_i$ for all $i = 1, \ldots, n$.

The **sum** of two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the vector

$$\vec{u} + \vec{v} = \begin{bmatrix} u_1 + v_1 \\ u_2 + v_2 \\ \vdots \\ u_n + v_n \end{bmatrix}.$$

The scalar multiple of a vector \vec{u} by a real scalar c is the vector

$$c\vec{u} = \begin{bmatrix} cu_1 \\ cu_2 \\ \vdots \\ cu_n \end{bmatrix}.$$

Example. We can identify a vector in \mathbb{R}^2 with a geometric point. Here is a vector along with two scalar multiples.

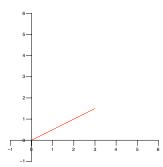
$$\vec{u} = \begin{bmatrix} 3 \\ 1.5 \end{bmatrix}, \qquad -\vec{u} = \begin{bmatrix} -3 \\ -1.5 \end{bmatrix}, \qquad 2\vec{u} = \begin{bmatrix} 6 \\ 3 \end{bmatrix}.$$

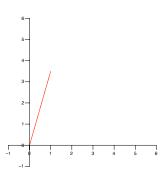
Example. Here are two vectors in \mathbb{R}^2 along with their sum.

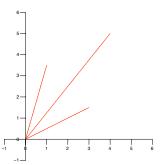
$$\vec{u} = \begin{bmatrix} 3 \\ 1.5 \end{bmatrix},$$

$$\vec{v} = \begin{bmatrix} 1 \\ 3.5 \end{bmatrix},$$

$$\vec{u} + \vec{v} = \begin{bmatrix} 4 \\ 5 \end{bmatrix}.$$







The sum of two vectors follows the parallelogram rule for addition: the sum is the fourth vertex of the parallelogram with vertices $\vec{0}$ (the zero vector all of whose entries are zero), \vec{u} , and \vec{v} .

Algebraic Properties of Vectors. Vectors in \mathbb{R}^n enjoy several algebraic properties reminiscent of those of the real numbers.

For \vec{u} , \vec{v} , and \vec{w} in \mathbb{R}^n and c and d in \mathbb{R} , these are

(i)
$$\vec{u} + \vec{v} = \vec{v} + \vec{u}$$
,

(ii)
$$(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w}),$$

(iii)
$$\vec{u} + \vec{0} = \vec{u}$$
,

(iv)
$$\vec{u} + (-\vec{u}) = \vec{0}$$
, where $-\vec{u}$ is the scalar multiple $(-1)\vec{u}$,

$$(\mathbf{v}) \ c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v},$$

(vi)
$$(c+d)\vec{u} = c\vec{u} + d\vec{u}$$
,

(vii)
$$(cd)\vec{u} = c(d\vec{u})$$
, and

(viii)
$$1\vec{u} = \vec{u}$$
.

We almost always write $\vec{u} + (-1)\vec{v}$ as $\vec{u} - \vec{v}$. What does $\vec{u} - \vec{v}$ look like?

Linear Combinations. The linear combination of p vectors $\vec{v}_1, \vec{v}_2, \ldots, v_p$ in \mathbb{R}^n with weights c_1, c_2, \ldots, c_p is the vector

$$\vec{y} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_p \vec{v}_p.$$

There is no need for parenthesis in a linear combination because of Property (iii).

In the previous Example, what do the linear combinations $2\vec{u} + \vec{v}$ and $\vec{u} - 2\vec{v}$ look like?

Example. For vectors in \mathbb{R}^3 ,

$$\vec{a}_1 = \begin{bmatrix} 1 \\ -2 \\ -5 \end{bmatrix}, \ \vec{a}_2 = \begin{bmatrix} 2 \\ 5 \\ 6 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 7 \\ 4 \\ -3 \end{bmatrix},$$

do there exist weights x_1 and x_2 so that \vec{b} is the linear combination

$$x_1 \vec{a}_1 + x_2 \vec{a}_2 = \vec{b}?$$

The entries of the linear combination make a linear system

$$x_1 + 2x_2 = 7,$$

 $-2x_1 + 5x_2 = 4,$
 $-5x_1 + 6x_2 = -3.$

Row reducing the augment matrix for this linear systems gives

$$\begin{bmatrix} 1 & 2 & | & 7 \\ -2 & 5 & | & 4 \\ -5 & 6 & | & -3 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 7 \\ 0 & 9 & | & 18 \\ 0 & 16 & | & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 2 & | & 7 \\ 0 & 1 & | & 2 \\ 0 & 16 & | & 32 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & | & 3 \\ 0 & 1 & | & 2 \\ 0 & 0 & | & 0 \end{bmatrix}.$$

Thus $x_1 = 3$ and $x_2 = 2$ satisfies $x_1\vec{a}_1 + x_2\vec{a}_2 = \vec{b}$, as can be verified.

////

The original augmented matrix has the form of $\begin{bmatrix} \vec{a}_1 & \vec{a}_2 & | & \vec{b} \end{bmatrix}$.

The **vector equation** $x_1\vec{a}_1 + x_2\vec{a}_2 = \vec{b}$ as the same solution set as that of the linear system whose augmented matrix is $\begin{bmatrix} a_1 & a_2 & | & \vec{b} \end{bmatrix}$.

The existence of a solution x_1 and x_2 is the same as saying that \vec{b} is a linear combination of the vectors \vec{a}_1 and \vec{a}_2 .

This brings us to an important concept in linear algebra.

Definition. For p vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ in \mathbb{R}^n , the set of all linear combinations of $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$ is called the **subset of** \mathbb{R}^n **spanned** (or generated) **by** $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p$, and we write $\text{Span}(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_p)$ for this subset.

Examples. (a) For a nonzero vector \vec{v} in \mathbb{R}^2 , what is $\mathrm{Span}(\vec{v})$?

The linear combination of one vector is just the set of all scalar multiples $c\vec{v}$, and so $\mathrm{Span}(\vec{v})$ is a line through the origin.

- (b) For vectors \vec{u} and \vec{v} in \mathbb{R}^2 with \vec{v} not a scalar multiple of \vec{u} , we have that $\mathrm{Span}(\vec{u}, \vec{v})$ is \mathbb{R}^2 (think of an "etch-a-sketch").
- (c) For vectors \vec{u} and \vec{v} in \mathbb{R}^3 with \vec{v} not a scalar multiple of \vec{u} , we have that $\mathrm{Span}(\vec{u}, \vec{v})$ is a plane through the origin.

And the question of if there are scalars x_1 and x_2 or not such that $x_1\vec{u} + x_2\vec{v} = \vec{b}$ is about if \vec{b} is in $\mathrm{Span}(\vec{u}, \vec{v})$ or not.

Example. Is the vector

$$\vec{b} = \begin{bmatrix} -3\\8\\1 \end{bmatrix}$$

in subset of \mathbb{R}^3 spanned by the vectors

$$\vec{a}_1 = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}, \ \vec{a}_2 = \begin{bmatrix} 5 \\ -13 \\ -3 \end{bmatrix}?$$

Since \vec{a}_2 is not a scalar multiple of \vec{a}_1 , then $\mathrm{Span}(\vec{a}_1, \vec{a}_2)$ is a plane through the origin in \mathbb{R}^3 .

The question of whether or not \vec{b} is in this plane can be answered by row reducing the augmented matrix associated with the linear combination $x_1\vec{a}_1 + x_2\vec{a}_2 = \vec{b}$:

$$\begin{bmatrix} 1 & 5 & | & -3 \\ -2 & -13 & | & 8 \\ 3 & -3 & | & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & | & -3 \\ 0 & -3 & | & 2 \\ 0 & -18 & | & 10 \end{bmatrix} \sim \begin{bmatrix} 1 & 5 & | & -3 \\ 0 & -3 & | & 2 \\ 0 & 0 & | & -2 \end{bmatrix}.$$

Because of the appearance of the row $\begin{bmatrix} 0 & 0 & | & -2 \end{bmatrix}$, the linear system is inconsistent, and so \vec{b} is not in Span (\vec{a}_1, \vec{a}_2) .