
Math 313 Lecture #4
§1.4: Matrix Equations

Recall the linear combination of p vectors ~v1, ~v2, . . . , ~vp in Rn with weights c1, c2, . . . , cp
in R:

c1~v1 + c2~v2 + · · ·+ cp~vp.

We are going to use this linear combination to define a product of an m × n matrix A
with a vector ~x in Rn.

We view the m× n matrix A as m columns where the jth column ~aj is a vector in Rm.

The entries of the vector ~x in Rn we denote by x1, x2, . . . , xn.

We define the product of the m× n matrix A with the vector ~x to be the vector in Rm

determined by
A~x = x1~a1 + x2~a2 + · · ·xn~an.

This product only makes sense when the number of columns of A equals the number of
entries in ~x.

We also write the product of A with ~x as

A~x =
[
~a1 ~a2 · · · ~an

]

x1

x2
...
xn

 .

Examples. (a) We can compute a product via the linear combination,

[
3 2 −4
1 2 0

] 5
−1
2

 = 5

[
3
1

]
+ (−1)

[
2
2

]
+ 2

[
−4
0

]
=

[
15
5

]
+

[
−2
−2

]
+

[
−8
0

]
=

[
5
13

]
.

(b) We can rewrite a linear combination as a product,

2~a1 − 3~a2 + 5~a3 =
[
~a1 ~a2 ~a3

]  2
−3
5

 = A~x for ~x =

 2
−3
5

 .

We should become familiar and adroit at using the linear combination and the product
interchangeably. / / / /

Why the product of a matrix with a vector? Because it enables us to view a linear system
as a matrix equation. Here is how.

The jth equation in a linear system m equations in n variables x1, x2, . . . , xn has the form

ai1x1 + aj2x2 + · · ·+ ajnxn = bj.



By forming the vectors

~a1 =


a11
a21
...

am1

 , ~a2 =


a12
a22
...

am2

 , . . . ,~an =


a1n
a2n
...

amn

 , ~b =


b1
b2
...
bm

 ,

in Rm, we recognize that the linear system can be written as the linear combination

x1~a1 + x2~a2 + · · ·+ xn~an = ~b,

which becomes the matrix equation

A~x = ~b.

A solution of A~x = ~b is a vector ~s in Rn which satisfies A~s = ~b.

Theorem 3. The matrix equation A~x = ~b has the same solution set as that of the
vector equation x1~a1 + x2~a2 + · · · + xn~an = ~b, which has the same solution set of the
linear system whose augmented matrix is[

~a1 ~a2 · · · ~an | ~b
]
.

We know from our discussion of span, that A~x = ~b has a solution when ~b is a linear
combination of the columns of A.

But it is possible for A~x = ~b to be consistent for every choice of ~b?

Example. For

A =

 1 3 4
−4 2 −6
−3 −2 −7

 , and ~b =

b1b2
b3

 ,

is A~x = ~b consistent?

We answer this question by row reducing the augmented matrix associated to the linear
system: 1 3 4 | b1

−4 2 −6 | b2
−3 −2 −7 | b3

 ∼
1 3 4 | b1

0 14 10 | b2 + 4b1
0 7 5 | b3 + 3b1

 ∼
1 3 4 | b1

0 14 10 | b2 + 4b1
0 0 0 | ∗


where the bottom right entry (listed as ∗) is

b3 + 3b1 − (1/2)(b2 + 4b1) = b1 − (1/2)b2 + b3.

For the matrix equation to be consistent requires that this right bottom entry be zero,
and so A~x = ~b is not consistent for every choice of ~b.

This says that the columns of A do not span R3 because not every vector ~b in R3 can be
written as a linear combination of the columns of A. / / / /



This example illustrates important connections between the columns of A (the coefficient

matrix, not the augmented matrix) and the vector ~b.

Theorem 4. Let A be an m×n matrix. The following statements are logically equivalent
(the truth of any one implies the truth of every other).

a. For each ~b in Rm, the matrix equation A~x = ~b is consistent.

b. Each ~b in Rm is a linear combination of the columns of A.

c. The columns of A span Rm.

d. The matrix A has a pivot position in every row.

The proof of this theorem is in the Appendix of this lecture note. You are invited to
study it on your own to increase your comprehension of the relations among the concepts
in the four statements, and a review of methods of proof (direct and contrapositive).

Computation of A~x. We defined the product of an m × n matrix A and a vector ~x
in Rn by the linear combination of the columns of A with weights being the entries of ~x.

A careful look at this product reveals a row-column pattern for the product.

Example. For

A =

3 −1 2
2 6 −1
1 4 −5

 and ~x =

x1

x2

x3


we have

A~x = x1~a1 + x2~a2 + x3~a3 =

3x1 − x2 + 2x3

2x1 + 6x2 − x3

x1 + 4x2 − 5x3

 .

The first entry of A~x is the first row of A “times” the column vector ~x, i.e., the sum of
products of the corresponding entries of the first row of A with the entries of the column
~x.

The same pattern appears in the second and third entries of A~x.

Example Is there a 3× 3 matrix I such that I~x = ~x?

Yes, the identity matrix

I =

1 0 0
0 1 0
0 0 1


satisfies I~x = ~x for all ~x in Rn.

Properties of the Matrix-Vector Product A~x. The matrix-vector product enjoys
several familiar-looking algebraic properties.

Theorem 5. If A is an m × n matrix, ~u and ~v are vectors in Rn, and c is a scalar (in
R), then

a. A(~u + ~v) = A~u + A~v, and

b. A(c~u) = c(A~u).



Proof. (a) Write A =
[
~a1 ~a2 · · · ~an

]
and

~u =


u1

u2
...
un

 , ~v =


v1
v2
...
vn

 .

Then by the linear combination definition of the matrix-vector product and the algebraic
properties of vectors, we have

A(~u + ~v) =
[
~a1 ~a2 · · · ~an

]

u1 + v1
u2 + v2

...
un + vn


= (u1 + v1)~a1 + (u2 + v2)~a2 + · · ·+ (un + vn)~an

= u1~a1 + u2~a2 + · · ·+ un~an + v1~a1 + v2~a2 + · · ·+ vn~an

= A~u + A~v.

(b) Here, again using the linear combination definition of the matrix-vector product, and
algebraic properties of vectors, we have

A(c~u) =
[
~a1 ~a2 · · · ~an

]

cu1

cu2
...

cun


= (cu1)~a1 + (cu2)~a2 + · · ·+ (cun)~an

= c
[
u1~u1 + c2~u2 + · · ·+ un~an

]
= c(A~u).

This completes the proof. �

Appendix. Here we give a proof of Theorem 4.

The logical equivalence of parts (a), (b), and (c) follow from the linear combination
definition of matrix-vector product A~x and what it means for a set of vectors to span
Rm.

It remains to show that (a) and (d) are logically equivalent.

Let ~b be a vector in Rm.

If U is an echelon form for A, then row reduction of the augmented matrix
[
A | ~b

]
leads to the row equivalent augmented matrix

[
U | ~d

]
for some ~d in Rm.

Suppose (d) is true, that is, that every row of A has a pivot position in it.



Now ask yourself if there can be a pivot position in the augmented part of the augmented

matrix
[
U | ~d

]
.

The answer is no, because the left most nonzero entry in each nonzero row of
[
U | ~d

]
is the pivot position, and this occurs in the U part of the augmented matrix.

So A~x = ~b has a solution by the Existence Theorem, and (a) is true, that is we have
proved that the truth of (d) implies the truth of (a).

To achieve the converse, i.e., the truth of (a) implies the truth of (d), we use the contra-
positive, i.e., we show that the falseness of (d) implies the falseness of (a).

Suppose (d) is false, that is, not every row of A has a pivot position in it.

Then not every row of U has a pivot position in it, and so the last row of U must be all
zeros.

Let ~d be a vector with a nonzero entry in its last entry, so that the augmented column

of
[
U | ~d

]
is a pivot column.

Thus U~x = ~d is inconsistent by the Existence Theorem.

Reversing the row operations that reduced
[
A | ~b

]
to
[
U | ~d

]
results in a~b for which

A~x = ~b is also inconsistent.

Thus A~x = ~b is not consistent for every ~b in Rm.

We have proved that the falseness of (d) leads to the falseness of (a), and this completes
the proof. �


