Math 313 Lecture \#5
 §1.5: Solution Sets of Linear Systems

We have seen how to parametrically describe a solution set of a consistent linear system. We will advance this parametric description through the use of linear combinations.

We start with a linear system that is always consistent.
Homogeneous Systems. A linear system is said to be homogeneous if it can be written in the form $\vec{A} \vec{x}=\overrightarrow{0}$, where A is an $m \times n$ matrix and $\overrightarrow{0}$ is the zero vector in \mathbb{R}^{n}.
A homogeneous system always has the trivial solution $\vec{x}=\overrightarrow{0}$ in \mathbb{R}^{n} because $A \overrightarrow{0}=\overrightarrow{0}$.
[We are using the same notation $\overrightarrow{0}$ to represent the zero vector in \mathbb{R}^{m} and in \mathbb{R}^{n}. Typically the context determines the number of entries in $\overrightarrow{0}$.]
An important question then for a homogeneous system is whether the trivial solution is the only solution (is it unique) or there are other nontrivial solutions.
The answer to this question follows from the Uniqueness Theorem: $A \vec{x}=\overrightarrow{0}$ has a nontrivial solution if and only if there is a free variable.
Example. Find the solution set of $A \vec{x}=\overrightarrow{0}$ where

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right] .
$$

We row reduce the augmented matrix to reduced echelon form:

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
3 & 5 & -4 & 0 \\
-3 & -2 & 4 & 0 \\
6 & 1 & -8 & 0
\end{array}\right] \begin{array}{c}
R_{2}+R_{1} \rightarrow R_{2} \\
R_{3}-2 R_{1} \rightarrow R_{3}
\end{array}} \\
& \sim\left[\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & -9 & 0 & 0
\end{array}\right] R_{3}+3 R_{2} \rightarrow R_{3} \\
& =\left[\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right](1 / 3) R_{2} \rightarrow R_{2} \\
& =\left[\begin{array}{ccc|c}
3 & 5 & -4 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] R_{1}-5 R_{2} \rightarrow R_{1} \\
& =\left[\begin{array}{ccc|c}
3 & 0 & -4 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right](1 / 3) R_{1} \rightarrow R_{1} \\
& =\left[\begin{array}{ccc|c}
1 & 0 & -4 / 3 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

Now, did we really need that last column in the augmented matrix as we row reduced? No, because it stays the same under all row operations.
The variables x_{1} and x_{2} are basic and the variable x_{3} is free.
Setting $x_{3}=t$, we obtain $x_{2}=0$ and $x_{1}=4 t / 3$.
The solution set is parametrically given by $\{(4 t / 3,0, t): t \in \mathbb{R}\}$.
To realize this solution set as linear combinations, we write each solution in vector form and use algebraic properties of vectors:

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
4 t / 3 \\
0 \\
t
\end{array}\right]=t\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right] .
$$

Geometrically, the solution set is a line through the origin $\overrightarrow{0}$ in \mathbb{R}^{3}, with the trivial solution corresponding to $t=0$.
Example. Find the solution set of $A \vec{x}=\overrightarrow{0}$ where

$$
A=\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right]
$$

Since we are finding the solution set of a homogeneous system, we need only row reduce the matrix A :

$$
\left[\begin{array}{lll}
1 & 2 & 3 \\
2 & 4 & 6 \\
3 & 6 & 9
\end{array}\right] \begin{aligned}
& R_{2}-2 R_{1} \rightarrow R_{2} \sim\left[\begin{array}{lll}
1 & 2 & 3 \\
R_{3}-3 R_{1} \rightarrow R_{3}
\end{array}\right] .\left[\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] ~
\end{aligned}
$$

We have one basic variable x_{1} and two free variables $x_{2}=s$ and $x_{3}=t$.
The basic variable in terms of the free variables is

$$
x_{1}=-2 x_{2}-3 x_{3}=-2 s-3 t
$$

So solutions of the homogeneous system as linear combinations are

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 s-3 t \\
s \\
t
\end{array}\right]=s\left[\begin{array}{c}
-2 \\
1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] .
$$

Since the two vectors here are not scalar multiples of each other, the solution set is a plane through the origin in \mathbb{R}^{3}.
In both of the examples, we saw that the solution set of a homogeneous system $A \vec{x}=\overrightarrow{0}$ can be written in the parametric vector form,

$$
\vec{x}=t_{1} \vec{u}_{1}+t_{2} \vec{u}_{2}+\cdots t_{p} \vec{u}_{p}
$$

where each \vec{u}_{j} satisfies $A \vec{u}_{j}=\overrightarrow{0}$. (You should check this in the examples.)

Solutions Sets of Consistent Nonhomogeneous Systems. For a nonhomogeneous system $A \vec{x}=\vec{b}$ (where $\vec{b} \neq \overrightarrow{0}$), we do not have that $\overrightarrow{0}$ is a solution because $A \overrightarrow{0}=\overrightarrow{0}$ is not \vec{b}.
But the solution set of a consistent $A \vec{x}=\vec{b}$ is related to the solution set of $A \vec{x}=\overrightarrow{0}$.
Example We will go back to the 3×3 matrix of the first example,

$$
A=\left[\begin{array}{ccc}
3 & 5 & -4 \\
-3 & -2 & 4 \\
6 & 1 & -8
\end{array}\right],
$$

and find the solution set of $A \vec{x}=\vec{b}$ where

$$
\vec{b}=\left[\begin{array}{c}
-6 \\
3 \\
-3
\end{array}\right] .
$$

We row reduce the augmented matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc:c}
3 & 5 & -4 & -6 \\
-3 & -2 & 4 & 3 \\
6 & 1 & -8 & -3
\end{array}\right] \begin{array}{c}
\\
R_{2}+R_{1} \rightarrow R_{2} \\
R_{3}-2 R_{1} \rightarrow R_{3}
\end{array}} \\
& \sim\left[\begin{array}{ccc|c}
3 & 5 & -4 & -6 \\
0 & 3 & 0 & -3 \\
0 & -9 & 0 & 9
\end{array}\right] R_{3}+3 R_{2} \rightarrow R_{3} \\
& =\left[\begin{array}{ccc|c}
3 & 5 & -4 & -6 \\
0 & 3 & 0 & -3 \\
0 & 0 & 0 & 0
\end{array}\right](1 / 3) R_{2} \rightarrow R_{2} \\
& =\left[\begin{array}{ccc|c}
3 & 5 & -4 & -6 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] R_{1}-5 R_{2} \rightarrow R_{1} \\
& =\left[\begin{array}{ccc|c}
3 & 0 & -4 & -1 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right](1 / 3) R_{1} \rightarrow R_{1} \\
& =\left[\begin{array}{cccc|c}
1 & 0 & -4 / 3 & -1 / 3 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

With x_{1} and x_{2} as basic variables and $x_{3}=t$ a free variable, the solutions are

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-1 / 3+4 t / 3 \\
-1 \\
t
\end{array}\right]=\left[\begin{array}{c}
-1 / 3 \\
-1 \\
0
\end{array}\right]+t\left[\begin{array}{c}
4 / 3 \\
0 \\
1
\end{array}\right]=\vec{p}+t \vec{u} .
$$

This is the parametric vector equation of a line that is parallel to the line $\vec{x}=t \vec{u}$.
Notice that $A \vec{p}=\vec{b}$ and $A \vec{u}=\overrightarrow{0}$.
Theorem 6. If $A \vec{x}=\vec{b}$ is consistent with \vec{p} satisfying $A \vec{p}=\vec{b}$, then every solution of $A \vec{x}=\vec{b}$ is of the form $\vec{x}=\vec{p}+\vec{v}_{h}$ where \vec{v}_{h} is any vector that satisfies $A \vec{v}_{h}=\overrightarrow{0}$.

