
Math 313 Lecture #6
§1.7: Linear Independence

We are going to the use the homogeneous system A~x = ~0 to analyze a critically important
concept for vectors in Rn.

Consider in R3 the three vectors

~v1 =

0
1
1

 , ~v2 =

−1
0
1

 , ~v3 =

1
1
0

 .
Notice that ~v3 = ~v1 − ~v2, and so one vector is a linear combination of the others.

Rewritten we have the linear combination ~v1 − ~v2 − ~v3 = ~0, or as a matrix equation,

[
~v1 ~v2 ~v3

]  1
−1
−1

 =

0
0
0

 .
Definitions. Vectors ~v1, ~v2, . . . , ~vp in Rn are said to be linearly dependent if there
are weights c1, c2, . . . , cp, not all zero, such that

c1~v1 + c2~v2 + · · ·+ cp~vp = ~0.

This equation is called a linear dependence relation for linearly dependent vectors.

Vectors ~v1, ~v2, . . . , ~vp in Rn are said to be linearly independent if the only solution of

x1~v1 + x2~v2 + · · ·+ xp~vp = ~0

is the trivial one, i.e., x1 = 0, x2 = 0, . . . , xp = 0.

Since we can switch between vector equations and matrix equations, the linear depen-
dence or linear independence of vectors is connected with a homogeneous system.

For A =
[
~a1 ~a2 · · · ~ap

]
we have that A~x = ~0 has the same solution set as that of

x1~a1 + x2~a2 + · · ·+ xp~ap = ~0.

So the columns of A are linearly independent if and only if the homogeneous system
A~x = ~0 has only the trivial solution.

Example Are the columns of

A =

0 1 0
1 0 4
6 −2 23


linearly independent?



We answer the question by row reducing the matrix:0 1 0
1 0 4
6 −2 23

R1 ↔ R2

∼

1 0 4
0 1 0
6 −2 23


R3 − 6R1 → R3

∼

1 0 4
0 1 0
0 −2 −1


R3 + 2R2 → R3

∼

1 0 4
0 1 0
0 0 −1

 .
This says that there are no free variables, and so A~x = ~0 has only the trivial solution,
meaning that the columns of A are linearly independent. / / / /

A single vector ~v1 in Rn is linearly independent if and only if ~v1 6= ~0.

Why? Because x1~v1 = ~0 implies that x1 = 0 when ~v 6= ~0.

Two vectors ~v1 and ~v2 in Rn are linearly independent if and only if neither is a scalar
multiple of the other.

Why? Because if ~v1 and ~v2 are linearly dependent, then c1~v1 + c2~v2 = ~0, without loss of
generality (or WLOG for short) say c1 6= 0 gives

~v1 = −c2
c1
~v2,

and so one vector is a scalar multiple of the other.

On the other hand, if one of ~v1 and ~v2 is a scalar multiple of the other, say WLOG
~v2 = d~v1, then

−d~v1 + ~v2 = ~0

where the weight of ~v2 is not zero, and so ~v1 and ~v2 are linear dependent.

For three or more vectors, we can similarly understand when they are linearly dependent.

Theorem 7. Vectors ~v1, ~v2, . . . , ~vp in Rn are linearly dependent if and only if one of
the p vectors is a linear combination of the other p− 1 vectors.

Proof. WLOG, suppose that ~vp is a linear combination of the other p− 1 vectors: there
are weights α1, α2, . . . , αp−1 such that

~vp = α1~v1 + α2~v2 + · · ·+ αp−1~vp−1.

Moving ~vp to the other side gives

α1~v1 + α2~v2 + · · ·+ αp−1~vp−1 − ~vp = ~0.



Letting ci = αi for i = 1, . . . , n− 1, and cp = −1 gives

c1~v1 + c2~v2 + · · ·+ cn~vp = ~0

where not all of the ci’s are zero, and thus the vectors ~v1, ~v2, . . . , ~vp are linearly dependent.

On the other hand, if the vectors ~v1, ~v2, . . . , ~vp are linearly dependent, then at least one
of the ci’s in

c1~v1 + c2~v2 + · · ·+ cp~vp = ~0,

can be chosen to be nonzero.

If WLOG we say it is cp, then solving for ~vp gives

~vp = −c1
cp
~v1 −

c2
cp
~v2 − · · · −

cp−1

cp
~vp−1.

Thus ~vp is a linear combination of the other p− 1 vectors. �

The contrapositive of Theorem 7 gives a characterization of linear independence: vectors
~v1, ~v2, . . . , ~vp in Rn are linearly independent if and only if none of the p vectors is a linear
combination of the other p− 1 vectors.

We explore some of the connections between the subset spanned by vectors and linear
independence of vectors.

Example. Suppose ~u and ~v are linearly independent vectors in R3.

Could either ~u or ~v be the zero vector? No, because if say ~u = ~0, then the vectors ~0 and
~v would be linearly dependent because 1~0 + 0~v = ~0.

A similar argument holds if ~v = ~0.

We know that Span(~u,~v) is a plane through the origin in R3.

For a vector ~w in R3, what can we say about the linear dependence or linearly indepen-
dence of the vectors ~u , ~v, and ~w?

If ~w belongs to Span(~u,~v), then ~w is a linear combination of ~u and ~v, and so by Theorem
7, the vectors ~u, ~v, and ~w are linearly dependent.

On the other hand, if the vectors ~u, ~v, and ~w are linearly dependent, then by Theorem
7, one of the three vectors is a linear combination of the other two.

There are two cases to consider.

Case 1. If ~w is a linear combination of ~u and ~v, then ~w is in Span(~u,~v).

Case 2. WLOG, suppose that the nonzero ~u is a linear combination of ~v and ~w.

Then there are weights c1 and c2 such that ~u = c1~v + c2 ~w.

Could c2 = 0? No because then ~u would be a scalar multiple of ~v, which is a contradiction.

So we get ~w = (1/c2)~u − (c1/c2)~v, hence ~w is a linear combination of ~u and ~v, meaning
that ~w is in Span(~u,~v). / / / /



There are some situations where we can guarantee the linear dependence of vectors.

Theorem 8. For p vectors ~v1, ~v2, . . . , ~vp in Rn, if p > n, then the p vectors are linearly
dependent.

Proof. In row reducing the n × p matrix A =
[
~v1 ~v2 · · · ~vp

]
there are more columns

than pivot positions.

Thus there are free variables and hence nontrivial solutions of A~x = ~0, meaning the
columns of A are linearly dependent. �

Theorem 9. If one of the p vectors ~v1, ~v2, . . . , ~vp in Rn is the zero vector, then the set
of p vectors is linearly dependent.

Proof. In the linear combination c1~v1 + c2~v2 + · · · + cp~vp with WLOG say vp = ~0, we
can take the first p− 1 weights all to be zero while taking cp = 1, thus making the linear
combination sum to ~0. �


