Math 313 Lecture \#6
 §1.7: Linear Independence

We are going to the use the homogeneous system $A \vec{x}=\overrightarrow{0}$ to analyze a critically important concept for vectors in \mathbb{R}^{n}.

Consider in \mathbb{R}^{3} the three vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] .
$$

Notice that $\vec{v}_{3}=\vec{v}_{1}-\vec{v}_{2}$, and so one vector is a linear combination of the others.
Rewritten we have the linear combination $\vec{v}_{1}-\vec{v}_{2}-\vec{v}_{3}=\overrightarrow{0}$, or as a matrix equation,

$$
\left[\begin{array}{lll}
\vec{v}_{1} & \vec{v}_{2} & \vec{v}_{3}
\end{array}\right]\left[\begin{array}{c}
1 \\
-1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right] .
$$

Definitions. Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} are said to be linearly dependent if there are weights $c_{1}, c_{2}, \ldots, c_{p}$, not all zero, such that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0} .
$$

This equation is called a linear dependence relation for linearly dependent vectors.
Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} are said to be linearly independent if the only solution of

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{p} \vec{v}_{p}=\overrightarrow{0}
$$

is the trivial one, i.e., $x_{1}=0, x_{2}=0, \ldots, x_{p}=0$.
Since we can switch between vector equations and matrix equations, the linear dependence or linear independence of vectors is connected with a homogeneous system.
For $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{p}\end{array}\right]$ we have that $A \vec{x}=\overrightarrow{0}$ has the same solution set as that of

$$
x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{p} \vec{a}_{p}=\overrightarrow{0} .
$$

So the columns of A are linearly independent if and only if the homogeneous system $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.

Example Are the columns of

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 4 \\
6 & -2 & 23
\end{array}\right]
$$

linearly independent?

We answer the question by row reducing the matrix:

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 4 \\
6 & -2 & 23
\end{array}\right] R_{1} \leftrightarrow R_{2}} \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 0 \\
6 & -2 & 23
\end{array}\right] R_{3}-6 R_{1} \rightarrow R_{3} \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & -2 & -1
\end{array}\right] R_{3}+2 R_{2} \rightarrow R_{3} \\
& \sim\left[\begin{array}{ccc}
1 & 0 & 4 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right] .
\end{aligned}
$$

This says that there are no free variables, and so $A \vec{x}=\overrightarrow{0}$ has only the trivial solution, meaning that the columns of A are linearly independent.
A single vector \vec{v}_{1} in \mathbb{R}^{n} is linearly independent if and only if $\vec{v}_{1} \neq \overrightarrow{0}$.
Why? Because $x_{1} \vec{v}_{1}=\overrightarrow{0}$ implies that $x_{1}=0$ when $\vec{v} \neq \overrightarrow{0}$.
Two vectors \vec{v}_{1} and \vec{v}_{2} in \mathbb{R}^{n} are linearly independent if and only if neither is a scalar multiple of the other.
Why? Because if \vec{v}_{1} and \vec{v}_{2} are linearly dependent, then $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}=\overrightarrow{0}$, without loss of generality (or WLOG for short) say $c_{1} \neq 0$ gives

$$
\vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}
$$

and so one vector is a scalar multiple of the other.
On the other hand, if one of \vec{v}_{1} and \vec{v}_{2} is a scalar multiple of the other, say WLOG $\vec{v}_{2}=d \vec{v}_{1}$, then

$$
-d \vec{v}_{1}+\vec{v}_{2}=\overrightarrow{0}
$$

where the weight of \vec{v}_{2} is not zero, and so \vec{v}_{1} and \vec{v}_{2} are linear dependent.
For three or more vectors, we can similarly understand when they are linearly dependent.
Theorem 7 . Vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} are linearly dependent if and only if one of the p vectors is a linear combination of the other $p-1$ vectors.
Proof. WLOG, suppose that \vec{v}_{p} is a linear combination of the other $p-1$ vectors: there are weights $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{p-1}$ such that

$$
\vec{v}_{p}=\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\cdots+\alpha_{p-1} \vec{v}_{p-1}
$$

Moving \vec{v}_{p} to the other side gives

$$
\alpha_{1} \vec{v}_{1}+\alpha_{2} \vec{v}_{2}+\cdots+\alpha_{p-1} \vec{v}_{p-1}-\vec{v}_{p}=\overrightarrow{0} .
$$

Letting $c_{i}=\alpha_{i}$ for $i=1, \ldots, n-1$, and $c_{p}=-1$ gives

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{p}=\overrightarrow{0}
$$

where not all of the c_{i} 's are zero, and thus the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly dependent. On the other hand, if the vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ are linearly dependent, then at least one of the c_{i} 's in

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0}
$$

can be chosen to be nonzero.
If WLOG we say it is c_{p}, then solving for \vec{v}_{p} gives

$$
\vec{v}_{p}=-\frac{c_{1}}{c_{p}} \vec{v}_{1}-\frac{c_{2}}{c_{p}} \vec{v}_{2}-\cdots-\frac{c_{p-1}}{c_{p}} \vec{v}_{p-1} .
$$

Thus \vec{v}_{p} is a linear combination of the other $p-1$ vectors.
The contrapositive of Theorem 7 gives a characterization of linear independence: vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} are linearly independent if and only if none of the p vectors is a linear combination of the other $p-1$ vectors.

We explore some of the connections between the subset spanned by vectors and linear independence of vectors.
Example. Suppose \vec{u} and \vec{v} are linearly independent vectors in \mathbb{R}^{3}.
Could either \vec{u} or \vec{v} be the zero vector? No, because if say $\vec{u}=\overrightarrow{0}$, then the vectors $\overrightarrow{0}$ and \vec{v} would be linearly dependent because $1 \overrightarrow{0}+0 \vec{v}=\overrightarrow{0}$.
A similar argument holds if $\vec{v}=\overrightarrow{0}$.
We know that $\operatorname{Span}(\vec{u}, \vec{v})$ is a plane through the origin in \mathbb{R}^{3}.
For a vector \vec{w} in \mathbb{R}^{3}, what can we say about the linear dependence or linearly independence of the vectors \vec{u}, \vec{v}, and \vec{w} ?
If \vec{w} belongs to $\operatorname{Span}(\vec{u}, \vec{v})$, then \vec{w} is a linear combination of \vec{u} and \vec{v}, and so by Theorem 7, the vectors \vec{u}, \vec{v}, and \vec{w} are linearly dependent.

On the other hand, if the vectors \vec{u}, \vec{v}, and \vec{w} are linearly dependent, then by Theorem 7 , one of the three vectors is a linear combination of the other two.

There are two cases to consider.
Case 1. If \vec{w} is a linear combination of \vec{u} and \vec{v}, then \vec{w} is in $\operatorname{Span}(\vec{u}, \vec{v})$.
Case 2. WLOG, suppose that the nonzero \vec{u} is a linear combination of \vec{v} and \vec{w}.
Then there are weights c_{1} and c_{2} such that $\vec{u}=c_{1} \vec{v}+c_{2} \vec{w}$.
Could $c_{2}=0$? No because then \vec{u} would be a scalar multiple of \vec{v}, which is a contradiction.
So we get $\vec{w}=\left(1 / c_{2}\right) \vec{u}-\left(c_{1} / c_{2}\right) \vec{v}$, hence \vec{w} is a linear combination of \vec{u} and \vec{v}, meaning that \vec{w} is in $\operatorname{Span}(\vec{u}, \vec{v})$.

There are some situations where we can guarantee the linear dependence of vectors.
Theorem 8 . For p vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n}, if $p>n$, then the p vectors are linearly dependent.
Proof. In row reducing the $n \times p$ matrix $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{p}\end{array}\right]$ there are more columns than pivot positions.
Thus there are free variables and hence nontrivial solutions of $A \vec{x}=\overrightarrow{0}$, meaning the columns of A are linearly dependent.
Theorem 9 . If one of the p vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}$ in \mathbb{R}^{n} is the zero vector, then the set of p vectors is linearly dependent.
Proof. In the linear combination $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}$ with WLOG say $v_{p}=\overrightarrow{0}$, we can take the first $p-1$ weights all to be zero while taking $c_{p}=1$, thus making the linear combination sum to $\overrightarrow{0}$.

