Math 313 Lecture \#7
 §1.8: Introduction to Linear Transformations

The notation $A \vec{x}=\vec{b}$ for a system of linear equations has another more function-like interpretation.

We can think of \vec{x} as an input and $A \vec{x}$ as an output, i.e., we have a function from \vec{x} in \mathbb{R}^{n} to $A \vec{x}$ in \mathbb{R}^{m}.
This expands the notion of function $y=f(x)$ from that of a real number x as an input and a real number y as an output, to a vector \vec{x} as an input and a vector \vec{y} as an output.
Definitions. A transformation (or function or mapping) T from \mathbb{R}^{n} to \mathbb{R}^{m} is a rule that assigns to each input \vec{x} in \mathbb{R}^{n} an output vector $T(\vec{x})$ in \mathbb{R}^{m}.
The set of inputs \mathbb{R}^{n} is called the domain of T.
The set \mathbb{R}^{m} where the outputs of T live, is called the codomain of T.
The notation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ reminds of the domain and codomain of T.
For each \vec{x} in the domain, the output $T(\vec{x})$ is called the image of \vec{x} under T.
The set of all images,

$$
\left\{T(\vec{x}): \vec{x} \in \mathbb{R}^{n}\right\}
$$

is a subset of the codomain of T, and is called the range of T.
Matrix Transformations. We focus mainly on those transformations of the form $T(\vec{x})=A \vec{x}$. [Math 314 deals with those transformations not of this form.]
For an $m \times n$ matrix A, the domain of T is \mathbb{R}^{n} and the codomain of T is \mathbb{R}^{m}.
We also write $\vec{x} \rightarrow A \vec{x}$ for the matrix transformation T.
Recalling that $A \vec{x}$ is the same as a linear combination of the columns of A, we infer that the range of T is the set of all linear combinations of the columns of A.

In other words, the range of $\vec{x} \rightarrow A \vec{x}$ is the subset of \mathbb{R}^{m} spanned by the columns of A.
Basic questions about matrix transformations are: (1) for a given vector \vec{b} in the codomain, is there a vector \vec{x} in the domain with $A \vec{x}=\vec{b}$? (2) Is there more than one choice of \vec{x} such that $A \vec{x}=\vec{b}$?
Example. Let

$$
A=\left[\begin{array}{cc}
2 & 1 \\
1 & 0 \\
3 & -1
\end{array}\right], \vec{b}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right], \vec{c}=\left[\begin{array}{l}
4 \\
1 \\
1
\end{array}\right] .
$$

With the size of A being 3×2, the matrix transformation $\vec{x} \rightarrow A \vec{x}$ has domain \mathbb{R}^{2} and codomain \mathbb{R}^{3}.
(a) Is there a vector \vec{x} in \mathbb{R}^{2} such that $A \vec{x}=\vec{b}$?

This can be answered by row reduction of the augmented matrix:

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{cc:c}
2 & 1 & 1 \\
1 & 0 & 2 \\
3 & -1 & 3
\end{array}\right] R_{1} \leftrightarrow R_{2}} & \sim\left[\begin{array}{cc:c}
1 & 0 & 2 \\
2 & 1 & 1 \\
3 & -1 & 3
\end{array}\right] \\
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}-3 R_{1} \rightarrow R_{2}
\end{array}\right] \begin{array}{cc:c}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & -1 & -3
\end{array}\right] R_{3}+R_{2} \rightarrow R_{3} \text {. }
$$

The last row tells us that the linear system $A \vec{x}=\vec{b}$ is inconsistent, so there is no \vec{x} in \mathbb{R}^{2} for which $A \vec{x}=\vec{b}$.

In terms of the new terminology about transformations we learned earlier, we know now that \vec{b} is not in the range of the matrix transformation.
(b) Is there \vec{x} in \mathbb{R}^{2} such that $A \vec{x}=\vec{c}$?

We answer this by row reduction of the augmented matrix:

$$
\begin{aligned}
{\left[\begin{array}{cc:c}
2 & 1 & 4 \\
1 & 0 & 1 \\
3 & -1 & 1
\end{array}\right] R_{1} \leftrightarrow R_{2} } & \sim\left[\begin{array}{cc:c}
1 & 0 & 1 \\
2 & 1 & 4 \\
3 & -1 & 1
\end{array}\right] \begin{array}{c}
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}-3 R_{1} \rightarrow R_{2}
\end{array} \\
& \sim\left[\begin{array}{cc:c}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & -1 & -2
\end{array}\right] \\
& \sim\left[\begin{array}{cc:c}
1 & 0 & 1 \\
0 & 1 & 2 \\
0 & 0 & 0
\end{array}\right] .
\end{aligned}
$$

So \vec{c} is in the range of the matrix transformation.
Is there more than one choice of \vec{x} for which $A \vec{x}=\vec{c}$. No, only one choice because there is no free variable.
Linear Transformations. A matrix transformation $\vec{x} \rightarrow A \vec{x}$ has the properties

$$
A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v} \text { and } A(c \vec{u})=c(A \vec{u}) .
$$

We name these properties.
Definition. A transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is called linear if (i) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u}, \vec{v} in \mathbb{R}^{n}, and (2) $T(c \vec{u})=c T(\vec{u})$ for all scalars c and all \vec{u} in \mathbb{R}^{n}.
Every matrix transformation is linear.
Linearity of a transformation implies that it has several other important properties.

If T is linear, then $T(\overrightarrow{0})=\overrightarrow{0}$ because

$$
T(\overrightarrow{0})=T(0 \overrightarrow{0})=0 T(\overrightarrow{0})=\overrightarrow{0} .
$$

If T is linear then T satisfies the superposition principle, i.e.,

$$
T\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p}\right)=c_{1} T\left(\vec{u}_{1}\right)+c_{2} T\left(u_{2}\right)+\cdots+c_{p} T\left(u_{p}\right)
$$

by induction because we have the base case

$$
T\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}\right)=T\left(c \vec{u}_{1}\right)+T\left(c_{2} \vec{u}_{2}\right)=c_{1} T\left(\vec{u}_{1}\right)+c_{2} T\left(\vec{u}_{2}\right)
$$

and the induction step

$$
\begin{aligned}
& T\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{k} \vec{u}_{k}+c_{k+1} \vec{u}_{k+1}\right) \\
& =T\left(c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{k} \vec{u}_{k}\right)+T\left(c_{k+1} \vec{u}_{k+1}\right) \\
& =c_{1} T\left(\vec{u}_{1}\right)+c_{2} T\left(\vec{u}_{2}\right)+\cdots+c_{k} T\left(\vec{u}_{k}\right)+c_{k+1} T\left(\vec{u}_{k+1}\right) .
\end{aligned}
$$

Geometry of Matrix transformations. We can visualize a matrix transformation especially when the codomain is the same as the domain.
Example. For $r>0$ let

$$
A=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]
$$

Then the image of the matrix transformation $\vec{x} \rightarrow A \vec{x}$ is

$$
A \vec{x}=\left[\begin{array}{ll}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
r x_{1} \\
r x_{2}
\end{array}\right]=r\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=r \vec{x} .
$$

This linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is a contraction when $0<r<1$ and is a dilation when $r>1$.
Example. Let

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]
$$

The image of the matrix transformation $\vec{x} \rightarrow A \vec{x}$ is

$$
A \vec{x}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
0
\end{array}\right] .
$$

This linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is a projection onto the x_{1}-axis.
Example. Let

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]
$$

The image of the matrix transformation $\vec{x} \rightarrow A \vec{x}$ is

$$
A \vec{x}=\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+2 x_{2} \\
x_{2}
\end{array}\right]
$$

This linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is a shear.

Example. Let

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right] .
$$

The image of the matrix transformation $\vec{x} \rightarrow A \vec{x}$ is

$$
A \vec{x}=\left[\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
x_{2} \\
-x_{1}
\end{array}\right] .
$$

This linear transformation from \mathbb{R}^{2} to \mathbb{R}^{2} is a rotation.

