Math 313 Lecture #7 §1.8: Introduction to Linear Transformations

The notation $A\vec{x} = \vec{b}$ for a system of linear equations has another more function-like interpretation.

We can think of \vec{x} as an input and $A\vec{x}$ as an output, i.e., we have a function from \vec{x} in \mathbb{R}^n to $A\vec{x}$ in \mathbb{R}^m .

This expands the notion of function y = f(x) from that of a real number x as an input and a real number y as an output, to a vector \vec{x} as an input and a vector \vec{y} as an output.

Definitions. A transformation (or function or mapping) T from \mathbb{R}^n to \mathbb{R}^m is a rule that assigns to each input \vec{x} in \mathbb{R}^n an output vector $T(\vec{x})$ in \mathbb{R}^m .

The set of inputs \mathbb{R}^n is called the **domain** of T.

The set \mathbb{R}^m where the outputs of T live, is called the **codomain** of T.

The notation $T: \mathbb{R}^n \to \mathbb{R}^m$ reminds of the domain and codomain of T.

For each \vec{x} in the domain, the output $T(\vec{x})$ is called the **image** of \vec{x} under T.

The set of all images,

$$\{T(\vec{x}): \vec{x} \in \mathbb{R}^n\}$$

is a subset of the codomain of T, and is called the **range** of T.

Matrix Transformations. We focus mainly on those transformations of the form $T(\vec{x}) = A\vec{x}$. [Math 314 deals with those transformations not of this form.]

For an $m \times n$ matrix A, the domain of T is \mathbb{R}^n and the codomain of T is \mathbb{R}^m .

We also write $\vec{x} \to A\vec{x}$ for the matrix transformation T.

Recalling that $A\vec{x}$ is the same as a linear combination of the columns of A, we infer that the range of T is the set of all linear combinations of the columns of A.

In other words, the range of $\vec{x} \to A\vec{x}$ is the subset of \mathbb{R}^m spanned by the columns of A.

Basic questions about matrix transformations are: (1) for a given vector \vec{b} in the codomain, is there a vector \vec{x} in the domain with $A\vec{x} = \vec{b}$? (2) Is there more than one choice of \vec{x} such that $A\vec{x} = \vec{b}$?

Example. Let

$$A = \begin{bmatrix} 2 & 1 \\ 1 & 0 \\ 3 & -1 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}, \ \vec{c} = \begin{bmatrix} 4 \\ 1 \\ 1 \end{bmatrix}.$$

With the size of A being 3×2 , the matrix transformation $\vec{x} \to A\vec{x}$ has domain \mathbb{R}^2 and codomain \mathbb{R}^3 .

(a) Is there a vector \vec{x} in \mathbb{R}^2 such that $A\vec{x} = \vec{b}$?

This can be answered by row reduction of the augmented matrix:

$$\begin{bmatrix} 2 & 1 & | & 1 \\ 1 & 0 & | & 2 \\ 3 & -1 & | & 3 \end{bmatrix} R_1 \leftrightarrow R_2 \sim \begin{bmatrix} 1 & 0 & | & 2 \\ 2 & 1 & | & 1 \\ 3 & -1 & | & 3 \end{bmatrix} R_2 - 2R_1 \to R_2$$
$$\sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -3 \\ 0 & -1 & | & -3 \end{bmatrix} R_3 - 3R_1 \to R_2$$
$$\sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -3 \\ 0 & -1 & | & -3 \end{bmatrix} R_3 + R_2 \to R_3$$
$$\sim \begin{bmatrix} 1 & 0 & | & 2 \\ 0 & 1 & | & -3 \\ 0 & 0 & | & -6 \end{bmatrix}.$$

The last row tells us that the linear system $A\vec{x} = \vec{b}$ is inconsistent, so there is no \vec{x} in \mathbb{R}^2 for which $A\vec{x} = \vec{b}$.

In terms of the new terminology about transformations we learned earlier, we know now that \vec{b} is not in the range of the matrix transformation.

(b) Is there \vec{x} in \mathbb{R}^2 such that $A\vec{x} = \vec{c}$?

We answer this by row reduction of the augmented matrix:

$$\begin{bmatrix} 2 & 1 & | & 4\\ 1 & 0 & | & 1\\ 3 & -1 & | & 1 \end{bmatrix} R_1 \leftrightarrow R_2 \sim \begin{bmatrix} 1 & 0 & | & 1\\ 2 & 1 & | & 4\\ 3 & -1 & | & 1 \end{bmatrix} R_2 - 2R_1 \rightarrow R_2$$
$$\sim \begin{bmatrix} 1 & 0 & | & 1\\ 0 & 1 & | & 2\\ 0 & -1 & | & -2 \end{bmatrix} R_3 - 3R_1 \rightarrow R_2$$
$$\sim \begin{bmatrix} 1 & 0 & | & 1\\ 0 & 1 & | & 2\\ 0 & -1 & | & -2 \end{bmatrix} R_3 + R_2 \rightarrow R_3$$
$$\sim \begin{bmatrix} 1 & 0 & | & 1\\ 0 & 1 & | & 2\\ 0 & 0 & | & 0 \end{bmatrix}.$$

So \vec{c} is in the range of the matrix transformation.

Is there more than one choice of \vec{x} for which $A\vec{x} = \vec{c}$? No, only one choice because there is no free variable.

Linear Transformations. A matrix transformation $\vec{x} \to A\vec{x}$ has the properties

$$A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v}$$
 and $A(c\vec{u}) = c(A\vec{u})$.

We name these properties.

Definition. A transformation $T : \mathbb{R}^n \to \mathbb{R}^m$ is called **linear** if (i) $T(\vec{u}+\vec{v}) = T(\vec{u})+T(\vec{v})$ for all \vec{u}, \vec{v} in \mathbb{R}^n , and (2) $T(c\vec{u}) = cT(\vec{u})$ for all scalars c and all \vec{u} in \mathbb{R}^n .

Every matrix transformation is linear.

Linearity of a transformation implies that it has several other important properties.

If T is linear, then $T(\vec{0}) = \vec{0}$ because

$$T(\vec{0}) = T(0\vec{0}) = 0T(\vec{0}) = \vec{0}.$$

If T is linear then T satisfies the superposition principle, i.e.,

$$T(c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_p\vec{u}_p) = c_1T(\vec{u}_1) + c_2T(u_2) + \dots + c_pT(u_p)$$

by induction because we have the base case

$$T(c_1\vec{u}_1 + c_2\vec{u}_2) = T(c\vec{u}_1) + T(c_2\vec{u}_2) = c_1T(\vec{u}_1) + c_2T(\vec{u}_2)$$

and the induction step

$$T(c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_k\vec{u}_k + c_{k+1}\vec{u}_{k+1})$$

= $T(c_1\vec{u}_1 + c_2\vec{u}_2 + \dots + c_k\vec{u}_k) + T(c_{k+1}\vec{u}_{k+1})$
= $c_1T(\vec{u}_1) + c_2T(\vec{u}_2) + \dots + c_kT(\vec{u}_k) + c_{k+1}T(\vec{u}_{k+1}).$

Geometry of Matrix transformations. We can visualize a matrix transformation especially when the codomain is the same as the domain.

Example. For r > 0 let

$$A = \begin{bmatrix} r & 0 \\ 0 & r \end{bmatrix}.$$

Then the image of the matrix transformation $\vec{x} \to A\vec{x}$ is

$$A\vec{x} = \begin{bmatrix} r & 0\\ 0 & r \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} rx_1\\ rx_2 \end{bmatrix} = r \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = r\vec{x}.$$

This linear transformation from \mathbb{R}^2 to \mathbb{R}^2 is a **contraction** when 0 < r < 1 and is a **dilation** when r > 1.

Example. Let

$$A = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

The image of the matrix transformation $\vec{x} \to A\vec{x}$ is

$$A\vec{x} = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 \\ 0 \end{bmatrix}.$$

This linear transformation from \mathbb{R}^2 to \mathbb{R}^2 is a **projection** onto the x_1 -axis. Example. Let

$$A = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix}.$$

The image of the matrix transformation $\vec{x} \to A\vec{x}$ is

$$A\vec{x} = \begin{bmatrix} 1 & 2 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + 2x_2 \\ x_2 \end{bmatrix}.$$

This linear transformation from \mathbb{R}^2 to \mathbb{R}^2 is a **shear**.

Example. Let

$$A = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix}$$

•

The image of the matrix transformation $\vec{x} \to A \vec{x}$ is

$$A\vec{x} = \begin{bmatrix} 0 & 1\\ -1 & 0 \end{bmatrix} \begin{bmatrix} x_1\\ x_2 \end{bmatrix} = \begin{bmatrix} x_2\\ -x_1 \end{bmatrix}.$$

This linear transformation from \mathbb{R}^2 to \mathbb{R}^2 is a **rotation**.