
Math 313 Lecture #9
§2.1: Matrix Operations

Entry-Wise Notation for Matrices. For an m × n matrix A we let aij denote the
entry of A in the ith row and the jth column, and we call this the (i, j) entry of A.

Notational we write A = [aij] (the text’s notation) or A = (aij) (notation used in these
lecture notes), so that

A =


a11 a12 . . . an1
a21 a22 . . . an2
...

...
. . .

...
am1 am2 . . . amn

 .
For A written in terms of its columns

[
~a1 ~a2 · · · ~an

]
we have that

~a1 =


a11
a21
...
am1

 , ~a2 =


a12
a22
...
am2

 , . . . , ~an =


a1n
a2n
...

amn

 .
The zero matrix 0 is the matrix all of whose entries are zero.

The diagonal entries of A are the entries a11, a22, etc., and they form the main
diagonal of the matrix.

A diagonal matrix is an n×n matrix (m = n) where all of the nondiagonal entries are
zero, e.g., the identity matrix.

The Beginnings of Matrix Algebra. Two matrices A = (aij) and B = (bij) are
equal if they are of the same size (i.e., the same number of columns and rows), and
aij = bij for all i and j (i.e., entry-wise equality).

For A = (aij) an m × n matrix and α a scalar, the scalar multiple αA is the m × n
matrix with entries (αaij). [This is multiplication done entry-wise.]

For two matrices A = (aij) and B = (bij) of the same size, their sum A+B is the matrix
whose entries are (aij + bij). [This addition is entry-wise.]

Theorem 1 (The Rules of Sums and Scalar Multiples). Let α and β be scalars, and A,
B, and C matrices of the same size. Then

a. A+B = B + A (matrix addition is commutative),

b. (A+B) + C = A+ (B + C) (matrix addition is associative),

c. A+ 0 = A (the zero matrix is an additive identity),

d. α(A+B) = αA+ αB, (scalar multiplication distributes over matrix addition)

e. (α + β)A = αA+ βA,

f. (αβ)A = α(βA),

g. 1A = A (the scalar 1 is multiplicative identity for scalar multiplication).



Each of these rules is established by the showing that the ith column of the left-hand side
equals the ith column of the right-hand side, or by showing the (i, j) entries of both sides
are the same.

Matrix Multiplication. Multiplying a vector ~x by a matrix B results in a vector B~x.

If we then multiply the vector B~x by a matrix A, we get another vector A(B~x).

This is the composition of two matrix transformations and it is given by multiplying ~x
by the matrix AB defined by

(AB)~x = A(B~x).

We will find a “formula” for the “product” AB.

For A(B~x) to make sense requires that number of columns of A equals the number of
entries in B~x, i.e., the number of rows of B.

Let A be an m× n matrix and B an n× p matrix, and write B =
[
~b1 ~b2 · · · ~bp

]
.

Then with ~x in Rp, we have B~x = x1~b1 + x2~b2 + · · ·+ xp~bp, and so by the linearity of the
matrix transformation ~u 7→ A~u we have

A(B~x) = A(x1~b1 + x2~b2 + · · ·+ xp~bp)

= x1A~b1 + x2A~b2 + · · ·+ xpA~bp

=
[
A~b1 A~b2 · · · A~bp

]
x1
x2
...
xp

 .
This implies through the definition (AB)~x = A(B~x) that

AB =
[
A~b1 A~b2 · · · A~bp

]
.

This says that the ith column of AB is the linear combination of the columns of A with
the entries of the vector ~bi as the weights.

For A = (aij) an m × n matrix and B = (bij) an n × p matrix, the (i, j) entry of the
m× p matrix C = AB is

cij =
n∑

k=1

aikbkj.

This is the row-column pattern for multiplication of two matrices.

Example. Let

A =

[
0 −1 −2
1 −1 2

]
, B =

2 1
2 3
3 4

 .



Then

AB =

[
0 −1 −2
1 −1 2

]2 1
2 3
3 4

 =

[
0(2)− 1(2)− 2(3) 0(1)− 1(3)− 2(4)
1(2)− 1(2) + 2(3) 1(1)− 1(3) + 2(4)

]
=

[
−8 −11
6 6

]
.

Observe that the first row of A as a matrix times B gives the first row of AB.

If we let rowi(D) denote the ith row of a matrix D, then we have

rowi(AB) = rowi(A)B.

Theorem 2 (Properties of Matrix Multiplication). Let A be an m× n matrix, and let
B and C be matrices for which the indicated sums and products are defined.

a. A(BC) = (AB)C (matrix multiplication is associative),

b. A(B + C) = AB + AC (left distribution),

c. (B + C)A = BA+ CA (right distribution),

d. α(AB) = (αA)B = A(αB) for any scalar α,

e. ImA = A = AIn (identity for matrix multiplication).

Proof. Properties (b), (c), (d), and (e) are left for you to verify.

To verify property (a), we write C =
[
~c1 ~c2 · · · ~cp

]
.

Then

A(BC) = A
[
B~c1 B~c2 · · · B~cp

]
=
[
A(B~c1) A(B~c2) · · ·A(B~cp)

]
.

The definition of matrix multiplication is that (AB)~x = A(B~x), and so[
A(B~c1) A(B~c2) · · ·A(B~cp)

]
=
[
(AB)~c1 (AB)~c2 · · · (AB)~cp

]
= (AB)C.

This establishes the associativity of matrix multiplication. �

Notice that we did NOT put AB = BA on this list of properties. Why?

If A is a 3× 4 matrix and B is a 4× 7 matrix then AB is a 3× 7 matrix, but does BA
make any sense? No, because the number of columns of B does not equal the number of
rows of A.

For there to be a product BA requires that A be m× n and B be n×m.

But then AB is an m×m matrix while BA is an n× n matrix.

So to compare AB with BA requires that m = n, that is, that A and B must be square
matrices of the same size.

Okay then, if A and B are n× n matrices, is it always true that AB = BA?

Well, consider A =

[
1 2
1 1

]
and B =

[
1 0
1 1

]
. Then

AB =

[
1 2
1 1

] [
1 0
1 1

]
=

[
3 2
2 1

]
and BA =

[
1 0
1 1

] [
1 2
1 1

]
=

[
1 2
2 3

]
.

It is not always true that AB = BA:



Matrix Multiplication is NOT Commutative.

Does the cancellation law hold for matrix multiplication? That is, if AB = AC then
B = C?

You have a HW problem (#10) that shows the cancellation law does not always hold.

If AB = 0, then does A = 0 or B = 0?

You have a HW problem (#12) that shows it is possible for AB = 0 with A 6= 0 and
B 6= 0.

The Transpose of a Matrix. The transpose of an m × n matrix A is the matrix
AT whose columns are the rows of A, i.e., the (i, j) entry of AT is the (j, i) entry of A.

Example. If A =

2 1
2 3
3 4

, then AT =

[
2 2 3
1 3 4

]
.

Theorem 3 (Properties of the Transpose). Let A and B be matrices whose sizes are
appropriate for the indicated sums and products.

a. (AT )T = A.

b. (A+B)T = AT +BT .

c. (αA)T = αAT for any scalar α.

d. (AB)T = BTAT .

The proof of the first three properties is “straight-forward.”

The last property of the transpose may look wrong, but think about the sizes of the
matrices involved.

The proof of property (d) is in the appendix of this lecture note.

Appendix. Proof of property (d) of the transpose.

Let A = (aij) be an m× n matrix and B = (bij) be an n× p matrix.

We need to show that the (i, j) entry of (AB)T is the same as that of BTAT .

The (i, j) entry of (AB)T is the (j, i) entry of AB which is the product of the jth row of
A with the ith column of B.

The (i, j) entry of BTAT is the product of the ith row of BT with the jth column of A.

Thus the (i, j) entry of BTAT is product of the ith column of B with the jth row of A.

But this is the same as the (i, j) entry of (AB)T . So BTAT = (AB)T . �


