
Math 313 Lecture #10
§2.2: The Inverse of a Matrix

Matrix algebra provides tools for creating many useful formulas just like real number
algebra does.

For example, a real number a is invertible if there is a real number b such that

ba = ab = 1;

when this is the case, the real number b is called the multiplicative inverse of a, and of
course, b = a−1 = 1/a. The only non invertible real number is 0.

An n× n matrix A is said to be invertible or nonsingular if there is an n× n matrix
B such that

AB = BA = I;

otherwise, A is said to be non-invertible or singular.

When a square matrix A is invertible, the matrix B for which AB = BA = I is called a
multiplicative inverse of A.

The matrix B is unique (as you should have shown in the homework problem #25 in
Section 2.1).

So, there is only one multiplicative inverse of an invertible matrix; the unique multiplica-
tive inverse of an invertible matrix A is denoted by A−1.

Example. Let A =

−2 1 0
0 −2 1
7 0 −2

 and B =

 −4 −2 −1
−7 −4 −2
−14 −7 −4

. Then

AB =

1 0 0
0 1 0
0 0 1

 and BA =

 −4 −2 −1
−7 −4 −2
−14 −7 −4

−2 1 0
0 −2 1
7 0 −2

 =

1 0 0
0 1 0
0 0 1

 .

Thus A is invertible and A−1 = B. [We will learn latter in this lecture how to find A−1

when A is invertible, by row reduction.] �

When A is a 2× 2 matrix, there is a “nice” formula for its inverse when it is invertible.

Theorem 4. For A =

[
a b
c d

]
, if the quantity ad− bc 6= 0, then A is invertible and

A−1 =
1

ad− bc

[
d −b
−c a

]
.

We can verify that the given A−1 (when it exists, i.e., when ad− bc 6= 0) indeed satisfies
AA−1 = I and A−1A = I.

The contrapositive of Theorem 4 is that if A is not invertible, then ad − bc = 0. [You
have a homework problem #25 to prove that the converse – if ad− bc = 0, then A is not
invertible – is true.]



Thus a 2 × 2 matrix is invertible if and only if ad − bc 6= 0; we call this number the
determinant of A.

The existence of an inverse can be used to solve A~x = ~b when A is a square matrix.

Theorem 5. Suppose an n×n matrix A is invertible. Then for each~b ∈ Rn the equation
A~x = ~b has a unique solution ~x = A−1~b.

Proof. Let ~b be in Rn.

The “guess” A−1~b is a solution of A~x = ~b because

A(A−1~b) = (AA−1)~b = I~b = ~b.

To show that A−1~b is the only solution, we suppose that ~u is a solution of A~x = ~b and
show that ~u = A−1~b.

To this end we multiply both sides of A~u = ~b by A−1 (on the left of each side) to get

A−1(A~u) = A−1~b.

This simplifies to ~u = A−1~b, and so the solution is unique. �

Notice in this proof that we used both A−1A = I and AA−1 = I.

Theorem 6 (Properties of an Inverse). Let A and B be n× n matrices.

a. If A is invertible, then A−1 is invertible and (A−1)−1 = A.

b. If A and B are invertible, then AB is invertible and (AB)−1 = B−1A−1.

c. If A is invertible, then AT is invertible and (AT )−1 = (A−1)T .

Proof. (a) If A is invertible then A−1 exists, and A−1A = I and AA−1 = I, so that A−1

is invertible with inverse (A−1)−1 = A.

(b) If A and B are invertible, then B−1A−1 exists and (AB)(B−1A−1) = AIA−1 = I and
(B−1A−1)(AB) = B−1IB = I, so that AB is invertible with inverse B−1A−1.

(c) If A is invertible, then A−1 exists and AT (A−1)T = (A−1A)T = IT = I and
(A−1)TAT = (AA−1)T = IT = I, so that AT is invertible with inverse (A−1)T . �

Property (b) extends by induction so that the inverse of a product of a finite number of
invertible matrices is the product of the inverse matrices in reverse order:

(A1A2 · · · Ap)
−1 = A−1

p · · · A−1
2 A−1

1 .

Elementary Matrices. The theoretical basis for finding the inverse of an invertible
matrix is the use of invertible matrices “close to” the identity matrix.

A square matrix obtained by performing one elementary row operation on the identity
matrix is called an elementary matrix.

Examples. Let

A =

1 2 3
4 5 6
7 8 9

 ,



and consider the following three matrices obtained from the identity matrix by a single
elementary row operation:1 0 0

0 1 0
0 0 1


R2 ↔ R3

∼

1 0 0
0 0 1
0 1 0

 = E1,1 0 0
0 1 0
0 0 1

−3R2 → R2 ∼

1 0 0
0 −3 0
0 0 1

 = E2,1 0 0
0 1 0
0 0 1


R3 + 2R1 → R3

∼

1 0 0
0 1 0
2 0 1

 = E3.

Then

E1A =

1 0 0
0 0 1
0 1 0

1 2 3
4 5 6
7 8 9

 =

1 2 3
7 8 9
4 5 6

 ,

E2A =

1 0 0
0 −3 0
0 0 1

1 2 3
4 5 6
7 8 9

 =

 1 2 3
−12 −15 −18

7 8 9

 ,

E3A =

1 0 0
0 1 0
2 0 1

1 2 3
4 5 6
7 8 9

 =

1 2 3
4 5 6
9 12 15

 .

Each row operation encodes as multiplication by a matrix on the left!

Which of the three elementary matrices are invertible? All of them are, where each
inverse is another elementary matrix for the same type of row operation.

Theorem 7. An n×n matrix A is invertible if and only if A is row equivalent to I, i.e.,
there exists finitely many elementary matrices E1, E2, . . . , Ep such that Ep · · ·E2E1A = I.

The proof of this is in the next lecture.

How can we use Theorem 7 to find the inverse of an invertible matrix?

Look at Ep · · · E2E1A = I.

Multiplying both sides of this on the right by A−1 gives A−1 = Ep · · · E2E1.

So if we augment A with I, written
[
A | I

]
, and row reduce this augmented matrix by

the row operations in the order E1, E2, . . . , Ep we get

(Ep · · · E2E1)
[
A | I

]
∼
[
Ep · · · E2E1A | Ep · · · E2E1

]
=
[
I | A−1

]
.

We use row reduction to find the inverse of an invertible matrix A.

What would happen is A were not invertible and we row reduced
[
A | I

]
?



Example. Find, if possible, the inverse of

A =

1 2 2
1 1 2
1 1 1

 .

Augment A with I and row reduce:

(A|I) =

1 2 2 | 1 0 0
1 1 2 | 0 1 0
1 1 1 | 0 0 1

R2 −R1 → R2

R3 −R1 → R3

⇔

1 2 2 | 1 0 0
0 −1 0 | −1 1 0
0 −1 −1 | −1 0 1

R1 + 2R2 → R1

R3 −R2 → R3

⇔

1 0 2 | −1 2 0
0 −1 0 | −1 1 0
0 0 −1 | 0 −1 1

R1 + 2R3 → R1

⇔

1 0 0 | −1 0 2
0 −1 0 | −1 1 0
0 0 −1 | 0 −1 1

−R2 → R2

−R3 → R3

⇔

1 0 0 | −1 0 2
0 1 0 | 1 −1 0
0 0 1 | 0 1 −1

 .

So

A−1 =

−1 0 2
1 −1 0
0 1 −1

 .

We can (and should) verify this:

AA−1 =

1 2 2
1 1 2
1 1 1

−1 0 2
1 −1 0
0 1 −1

 =

1 0 0
0 1 0
0 0 1

 and A−1A = I (this left to you)X.

We can use A−1 to solve the system A~x = ~b for

~b =

1
2
3

 .

“Premultiplying” both sides of A~x = ~b by A−1, i.e., A−1A~x = A−1~b, gives

~x = A−1~b =

−1 0 2
1 −1 0
0 1 −1

1
2
3

 =

 5
−1
−1

 .



We can (and should) verify this:

A~x =

1 2 2
1 1 2
1 1 1

 5
−1
−1

 =

1
2
3

 = ~b X.

We would get the same solution if we row reduced
[
A | ~b

]
? [Left for you to verify.]


