Math 313 Lecture \#12

§3.1: Introduction to Determinants

Recall that a 2×2 matrix

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]
$$

is invertible if and only if the determinant

$$
\operatorname{det}(A)=\left|\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right|=a_{11} a_{22}-a_{12} a_{21}
$$

is nonzero.
To find the analogous formula for an 3×3 matrix (and eventually an $n \times n$ matrix), we make use of a invertible matrix being row equivalent to I.
If $a_{11} \neq 0$ in a 3×3 matrix $A=\left(a_{i j}\right)$, then

$$
\begin{aligned}
A & =\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \begin{array}{l}
R_{2}-\left(a_{21} / a_{11}\right) R_{1} \rightarrow R_{2} \\
R_{3}-\left(a_{31} / a_{11}\right) R_{1} \rightarrow R_{3} \\
\end{array} \\
& \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{22}-a_{12} a_{21} / a_{11} & a_{23}-a_{13} a_{21} / a_{11} \\
0 & a_{32}-a_{31} a_{12} / a_{11} & a_{33}-a_{31} a_{13} / a_{11}
\end{array}\right] \begin{array}{c}
a_{11} R_{2} \rightarrow R_{2} \\
a_{11} R_{3} \rightarrow R_{3} \\
\end{array} \\
& \sim\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
0 & a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{31} a_{13}
\end{array}\right] .
\end{aligned}
$$

This matrix is row equivalent to I if and only if the determinant of the lower right 2×2 submatrix is nonzero:

$$
\begin{aligned}
& \left|\begin{array}{ll}
a_{11} a_{22}-a_{12} a_{21} & a_{11} a_{23}-a_{13} a_{21} \\
a_{11} a_{32}-a_{12} a_{31} & a_{11} a_{33}-a_{31} a_{13}
\end{array}\right| \\
& =a_{11}^{2} a_{22} a_{33}-a_{11} a_{13} a_{22} a_{31}-a_{11} a_{12} a_{21} a_{33}+a_{12} a_{13} a_{21} a_{31} \\
& \quad-\left(a_{11}^{2} a_{23} a_{32}-a_{11} a_{12} a_{23} a_{31}-a_{11} a_{13} a_{21} a_{32}+a_{12} a_{13} a_{21} a_{31}\right) \\
& =a_{11}^{2} a_{22} a_{33}-a_{11} a_{13} a_{22} a_{31}-a_{11} a_{12} a_{21} a_{33} \\
& \quad-a_{11}^{2} a_{23} a_{32}+a_{11} a_{12} a_{23} a_{31}+a_{11} a_{13} a_{21} a_{32} \\
& = \\
& =a_{11}\left(a_{11} a_{22} a_{33}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}\right) .
\end{aligned}
$$

Since $a_{11} \neq 0$, then A is invertible if and only if

$$
a_{11} a_{22} a_{33}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32} \neq 0
$$

The determinant of a 3×3 matrix $A=\left(a_{i j}\right)$ is defined by

$$
\operatorname{det}(A)=a_{11} a_{22} a_{33}-a_{13} a_{22} a_{31}-a_{12} a_{21} a_{33}-a_{11} a_{23} a_{32}+a_{12} a_{23} a_{31}+a_{13} a_{21} a_{32}
$$

Now this is a terribly difficult expression to remember. Let's see if we can find a nemonic (i.e., a pattern) that is easier to remember but whose usage leads to the expression.

If we collect the a_{11} terms together, and the a_{12} terms together, and the a_{13} terms together, we get

$$
\begin{aligned}
& a_{11}\left(a_{22} a_{33}-a_{23} a_{32}\right)-a_{12}\left(a_{21} a_{33}-a_{23} a_{31}\right)+a_{13}\left(a_{21} a_{32}-a_{22} a_{31}\right) \\
& =a_{11}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|-a_{12}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}\left|\begin{array}{cc}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right|
\end{aligned}
$$

Each of the 2×2 matrices appearing in this determinant are 2×2 submatrices of A !
Let $A_{i j}$ be the 2×2 submatrix formed from A by deleting its $i^{\text {th }}$ row and its $j^{\text {th }}$ column.
Then the determinant of a 3×3 matrix $A=\left(a_{i j}\right)$ is

$$
\operatorname{det}(A)=a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right) .
$$

Cofactor Expansions of Matrices. The use of determinants of 2×2 submatrices of a 3×3 matrix A to define (and eventually compute) the determinant of A generalizes to $n \times n$ matrices.
Let A be an $n \times n$ matrix, and let $A_{i j}$ be the $(n-1) \times(n-1)$ matrix obtained from A by deleting its $i^{\text {th }}$ row and its $j^{\text {th }}$ column.

The cofactor of $a_{i j}$ is defined to be the quantity

$$
C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)
$$

In terms of cofactors, the determinant of a 3×3 matrix $A=\left(a_{i j}\right)$ takes the form

$$
\begin{aligned}
\operatorname{det}(A) & =a_{11} \operatorname{det}\left(A_{11}\right)-a_{12} \operatorname{det}\left(A_{12}\right)+a_{13} \operatorname{det}\left(A_{13}\right) \\
& =a_{11} C_{11}+a_{12} C_{12}+a_{13} C_{13}
\end{aligned}
$$

This is the form of the determinant that generalizes to an $n \times n$ matrix.
The determinant of an $n \times n$ matrix $A=\left(a_{i j}\right)$ is the quantity defined by

$$
\operatorname{det}(A)=\sum_{k=1}^{n} a_{1 k} C_{1 k}=a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}
$$

This nemonic is called the cofactor expansion of A across its first row. [Notice that $a_{11}, a_{12}, \ldots, a_{1 n}$ are the entries of the first row of A.]
This nemonic computes the determinant of a 4×4 matrix A as a sum of scalar multiples of determinants of four 3×3 submatrices of A.

By induction the nemonic bootstraps to any size of a square matrix.
Another notation for the determinant of A if $|A|$.

Example. Find the determinant of $A=\left[\begin{array}{ccccc}2 & 3 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 1 & 2 \\ 0 & 0 & 2 & 1 & 0\end{array}\right]$.
Apply cofactor expansion along the first row over and over again until we get to 2×2 matrices whose determinants are easy to compute:

$$
\begin{aligned}
\left|\begin{array}{lllll}
2 & 3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 0
\end{array}\right| & =2\left|\begin{array}{llll}
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 2 & 1 & 0
\end{array}\right|-3\left|\begin{array}{llll}
1 & 0 & 0 & 1 \\
1 & 0 & 0 & 1 \\
0 & 1 & 1 & 2 \\
0 & 2 & 1 & 0
\end{array}\right| \\
& =2\left(-(1)\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{array}\right|\right)-3\left((1)\left|\begin{array}{lll}
0 & 0 & 1 \\
1 & 1 & 2 \\
2 & 1 & 0
\end{array}\right|-(1)\left|\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 1
\end{array}\right|\right) \\
& =-2(1)\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|-3(1)\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right|+3(1)\left|\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right| \\
& =-2(1-2)-3(1-2)+3(1-2) \\
& =2
\end{aligned}
$$

Is cofactor expansion across the first row the only way to compute determinants?
Theorem 1. The determinant of an $n \times n$ matrix A can be computed by cofactor expansion across any row or across any column:

$$
\operatorname{det}(A)=\sum_{k=1}^{n} a_{i k} C_{i k}=\sum_{k=1}^{n} a_{k j} C_{k j}
$$

for all $i=1, \ldots, n$ and all $j=1, \ldots, n$.
The proof of this involves much messy algebra.
There are matrices for which the determinants are easy to compute.
Theorem 2. If A is a triangular $n \times n$ matrix, then $\operatorname{det}(A)=a_{11} a_{22} \cdots a_{n n}$ (the product of the entries of the main diagonal).

Proof. Cofactor expanding across the first column gives the determinant as the $(1,1)$ entry of A times the determinant of the $(n-1) \times(n-1)$ matrix A_{11}.

Now repeat this with A_{11} in place of A, until we arrive at a 2×2 matrix for which determinant is the product of the entries of the main diagonal by the 2×2 determinant formula.
Example. $\left|\begin{array}{ccc}3 & 100 & -19 \\ 0 & 2 & 56 \\ 0 & 0 & 4\end{array}\right|=(3)(2)(4)=24$.

