Math 313 Lecture \#13
 §3.2: Properties of Determinants

It would be great if we could first row reduce an $n \times n$ matrix A and then compute its determinant from the simpler row reduced matrix.
But alas, this method is doomed to fail: an invertible matrix A is row equivalent to I and the determinant of I (a diagonal matrix with 1 's on the main diagonal) is 1 , but is $\operatorname{det}(A)=\operatorname{det}(I)$?
But not all is lost: there is a way to recover the determinant of A from an echelon form AND the row operations needed to get to that echelon form.
Theorem 3. Let A be a square matrix.
a. If B is obtained from A by adding a multiple of one row of A to another row of A, then $\operatorname{det}(B)=\operatorname{det}(A)$.
b. If B is obtained from A by switching two rows of A, then $\operatorname{det}(B)=-\operatorname{det}(A)$.
c. If B is obtained from A by multiplying a row of A through by a scalar k, then $\operatorname{det}(B)=k \operatorname{det}(A)$.

Idea of Proof. We use induction, where the base case is for a 2×2 matrix A.
You had homework that verified what some of the row operations did to the determinant of a 2×2 matrix.

The effect of the remaining row operations on a 2×2 matrix are similarly verified.
Now assume that the statements of the Theorem hold for a $k \times k$ matrix A with $k \geq 2$.
The effect of an elementary matrix E on A leaves at least one row of A in the same place without changes in its entries, say the $i^{\text {th }}$ row.

Cofactor expansion of $B=E A$ across the $i^{\text {th }}$ row results in

$$
\operatorname{det}(E A)=(-1)^{i+1} a_{i 1} \operatorname{det}\left(B_{1 i}\right)+(-1)^{i+2} a_{i 2} \operatorname{det}\left(B_{2 i}\right)+\cdots+(-1)^{i+n} a_{i n} \operatorname{det}\left(B_{i n}\right)
$$

We recognize that the rows of each $k \times k$ matrix $B_{i j}$ are obtained from the rows of each $k \times k$ matrix $A_{i j}$ by the same type elementary row operations as E.

By the induction hypothesis we have $\operatorname{det}\left(B_{i j}\right)=\alpha \operatorname{det}\left(A_{i j}\right)$ for all $i=1,2, \ldots, n$ where α is 1 if E is scalar multiple of one row added to another, -1 if E is a switching of two rows, and r if E is scalar multiplying a row through by r.

We obtain

$$
\operatorname{det}(E A)=\alpha\left[(-1)^{i+1} a_{i 1} \operatorname{det}\left(A_{1 i}\right)+(-1)^{i+2} a_{i 2} \operatorname{det}\left(A_{2 i}\right)+\cdots+(-1)^{i+n} a_{i n} \operatorname{det}\left(A_{i n}\right)\right]
$$

which says that $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.
We can use row reduction of a square matrix to find its determinant as long as we keep track of the row operations that change the determinant.

Suppose an echelon form U is obtained from A by using only the row operations of switching rows and adding multiples of one row to another row (which can always be done without the third row operation).
If r is the number of row switches performed, then $\operatorname{det}(A)$ is $(-1)^{r} \operatorname{det}(U)$.
The determinant of U is just the product of diagonal entries of U because U is in triangular form.
Example. Use row reduction to find the determinant:

$$
\begin{aligned}
& \left|\begin{array}{lllll}
2 & 3 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 0
\end{array}\right| R_{1} \leftrightarrow R_{2}=(-1)\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
2 & 3 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 0
\end{array}\right| \begin{array}{l}
R_{2}-2 R_{1} \rightarrow R_{2} \\
R_{3}-R_{1} \rightarrow R_{3}
\end{array} \\
& =-(1)(1)\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 3 & 0 & 0 & -2 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 0
\end{array}\right| R_{2} \leftrightarrow R_{3}=-(-1)\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 3 & 0 & 0 & -2 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 2 & 1 & 0
\end{array}\right| \begin{array}{l}
R_{3}-3 R_{2} \rightarrow R_{3} \\
R_{5}-2 R_{4} \rightarrow R_{4}
\end{array} \\
& =\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & -1 & -4
\end{array}\right| R_{3} \leftrightarrow R_{4}=(-1)\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0 & -2 \\
0 & 0 & 0 & -1 & -4
\end{array}\right| R_{4} \leftrightarrow R_{5} \\
& =-(-1)\left|\begin{array}{ccccc}
1 & 0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 2 \\
0 & 0 & 0 & -1 & -4 \\
0 & 0 & 0 & 0 & -2
\end{array}\right|=2 .
\end{aligned}
$$

Notice that we did not have to use the row operation of multiplying a row through by a nonzero scalar.
We saw before that a 2×2 matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
This is also true for any $n \times n$ matrix, and adds another statement to the Inverse Matrix Theorem.

Theorem 4. A square matrix A is invertible if and only if $\operatorname{det}(A) \neq 0$.
Proof. Suppose A is invertible.
By the Inverse Matrix Theorem, A has n pivot positions, and these lie on the main diagonal of A.

Hence for an echelon form U for A, obtained by using only r row exchanges and multiples of one row added to another, we have $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$ where none of the main diagonal entries of U are zero.

This implies that $\operatorname{det}(A) \neq 0$.
Now suppose that $\operatorname{det}(A) \neq 0$.
Then row reducing A to an echelon form U, using on r row switches and multiples of one row added to another row, we have $\operatorname{det}(A)=(-1)^{r} \operatorname{det}(U)$.

With $\operatorname{det}(A) \neq 0$, we have that none of the diagonal entries of U can be zero (as their product is the determinant).
Thus every diagonal entry of U is pivot position for A.
By the Inverse Matrix Theorem, the matrix A is invertible.
What does the transpose do to the determinant of a square matrix?
Theorem 5. For an $n \times n$ matrix, we have $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$.
Idea of Proof. We use induction with $n=2$ as the base case.
By the formula for the determinant of a 2×2 matrix A, we immediately get $\operatorname{det}\left(A^{T}\right)=$ $\operatorname{det}(A)$.
Now suppose for any $k \times k$ matrix that transposition does not change the determinant.
Then the cofactor of $a_{1 j}$ in a $(k+1) \times(k+1)$ matrix A equals the cofactor of $a_{j 1}$ in A^{T} by the induction hypothesis because the cofactors involve $k \times k$ determinants.

Hence cofactor expansion across the first row of A equals the cofactor expansion down the first column of A^{T}.
Recall for an elementary matrix E that $\operatorname{det}(E A)=\operatorname{det}(E) \operatorname{det}(A)$.
It would be great if this works when E is not an elementary matrix. And it is great that it does!

Theorem 6. If A and B are $n \times n$ matrices, then

$$
\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)
$$

Proof. If A is singular, then $A B$ is singular too (why?), so that

$$
\operatorname{det}(A B)=0=\operatorname{det}(A) \operatorname{det}(B)
$$

If A is nonsingular, then A is the product of elementary matrices E_{k}, \ldots, E_{1}.
Since $\operatorname{det}(E C)=\operatorname{det}(E) \operatorname{det}(C)$ for any elementary matrix E and any matrix C, then

$$
\begin{aligned}
\operatorname{det}(A B) & =\operatorname{det}\left(E_{k} \cdots E_{1} B\right) \\
& =\operatorname{det}\left(E_{k}\right) \operatorname{det}\left(E_{k-1} \cdots E_{2} E_{1} B\right) \\
& =\operatorname{det}\left(E_{k}\right) \cdots \operatorname{det}\left(E_{1}\right) \operatorname{dim}(B) \\
& =\operatorname{det}\left(E_{k} \cdots E_{1}\right) \operatorname{det}(B) \\
& =\operatorname{det}(A) \operatorname{det}(B) .
\end{aligned}
$$

This completes the proof.

