
Math 313 Lecture #13
§3.2: Properties of Determinants

It would be great if we could first row reduce an n × n matrix A and then compute its
determinant from the simpler row reduced matrix.

But alas, this method is doomed to fail : an invertible matrix A is row equivalent to I
and the determinant of I (a diagonal matrix with 1’s on the main diagonal) is 1, but is
det(A) = det(I)?

But not all is lost: there is a way to recover the determinant of A from an echelon form
AND the row operations needed to get to that echelon form.

Theorem 3. Let A be a square matrix.

a. If B is obtained from A by adding a multiple of one row of A to another row of A,
then det(B) = det(A).

b. If B is obtained from A by switching two rows of A, then det(B) = −det(A).

c. If B is obtained from A by multiplying a row of A through by a scalar k, then
det(B) = kdet(A).

Idea of Proof. We use induction, where the base case is for a 2× 2 matrix A.

You had homework that verified what some of the row operations did to the determinant
of a 2× 2 matrix.

The effect of the remaining row operations on a 2× 2 matrix are similarly verified.

Now assume that the statements of the Theorem hold for a k × k matrix A with k ≥ 2.

The effect of an elementary matrix E on A leaves at least one row of A in the same place
without changes in its entries, say the ith row.

Cofactor expansion of B = EA across the ith row results in

det(EA) = (−1)i+1ai1det(B1i) + (−1)i+2ai2det(B2i) + · · ·+ (−1)i+naindet(Bin).

We recognize that the rows of each k × k matrix Bij are obtained from the rows of each
k × k matrix Aij by the same type elementary row operations as E.

By the induction hypothesis we have det(Bij) = αdet(Aij) for all i = 1, 2, . . . , n where
α is 1 if E is scalar multiple of one row added to another, −1 if E is a switching of two
rows, and r if E is scalar multiplying a row through by r.

We obtain

det(EA) = α
[
(−1)i+1ai1det(A1i) + (−1)i+2ai2det(A2i) + · · ·+ (−1)i+naindet(Ain)

]
which says that det(EA) = det(E)det(A). �

We can use row reduction of a square matrix to find its determinant as long as we keep
track of the row operations that change the determinant.



Suppose an echelon form U is obtained from A by using only the row operations of
switching rows and adding multiples of one row to another row (which can always be
done without the third row operation).

If r is the number of row switches performed, then det(A) is (−1)rdet(U).

The determinant of U is just the product of diagonal entries of U because U is in triangular
form.

Example. Use row reduction to find the determinant:∣∣∣∣∣∣∣∣∣∣
2 3 0 0 0
1 0 0 0 1
1 1 0 0 1
0 0 1 1 2
0 0 2 1 0

∣∣∣∣∣∣∣∣∣∣
R1 ↔ R2

= (−1)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
2 3 0 0 0
1 1 0 0 1
0 0 1 1 2
0 0 2 1 0

∣∣∣∣∣∣∣∣∣∣
R2 − 2R1 → R2

R3 −R1 → R3

= −(1)(1)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
0 3 0 0 −2
0 1 0 0 0
0 0 1 1 2
0 0 2 1 0

∣∣∣∣∣∣∣∣∣∣
R2 ↔ R3 = −(−1)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
0 1 0 0 0
0 3 0 0 −2
0 0 1 1 2
0 0 2 1 0

∣∣∣∣∣∣∣∣∣∣
R3 − 3R2 → R3

R5 − 2R4 → R4

=

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
0 1 0 0 0
0 0 0 0 −2
0 0 1 1 2
0 0 0 −1 −4

∣∣∣∣∣∣∣∣∣∣R3 ↔ R4
= (−1)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
0 1 0 0 0
0 0 1 1 2
0 0 0 0 −2
0 0 0 −1 −4

∣∣∣∣∣∣∣∣∣∣R4 ↔ R5

= −(−1)

∣∣∣∣∣∣∣∣∣∣
1 0 0 0 1
0 1 0 0 0
0 0 1 1 2
0 0 0 −1 −4
0 0 0 0 −2

∣∣∣∣∣∣∣∣∣∣
= 2.

Notice that we did not have to use the row operation of multiplying a row through by a
nonzero scalar. / / / /

We saw before that a 2× 2 matrix A is invertible if and only if det(A) 6= 0.

This is also true for any n×n matrix, and adds another statement to the Inverse Matrix
Theorem.

Theorem 4. A square matrix A is invertible if and only if det(A) 6= 0.

Proof. Suppose A is invertible.

By the Inverse Matrix Theorem, A has n pivot positions, and these lie on the main
diagonal of A.

Hence for an echelon form U for A, obtained by using only r row exchanges and multiples
of one row added to another, we have det(A) = (−1)rdet(U) where none of the main
diagonal entries of U are zero.



This implies that det(A) 6= 0.

Now suppose that det(A) 6= 0.

Then row reducing A to an echelon form U , using on r row switches and multiples of one
row added to another row, we have det(A) = (−1)rdet(U).

With det(A) 6= 0, we have that none of the diagonal entries of U can be zero (as their
product is the determinant).

Thus every diagonal entry of U is pivot position for A.

By the Inverse Matrix Theorem, the matrix A is invertible. �

What does the transpose do to the determinant of a square matrix?

Theorem 5. For an n× n matrix, we have det(AT ) = det(A).

Idea of Proof. We use induction with n = 2 as the base case.

By the formula for the determinant of a 2× 2 matrix A, we immediately get det(AT ) =
det(A).

Now suppose for any k × k matrix that transposition does not change the determinant.

Then the cofactor of a1j in a (k + 1)× (k + 1) matrix A equals the cofactor of aj1 in AT

by the induction hypothesis because the cofactors involve k × k determinants.

Hence cofactor expansion across the first row of A equals the cofactor expansion down
the first column of AT . �

Recall for an elementary matrix E that det(EA) = det(E)det(A).

It would be great if this works when E is not an elementary matrix. And it is great that
it does!

Theorem 6. If A and B are n× n matrices, then

det(AB) = det(A)det(B).

Proof. If A is singular, then AB is singular too (why?), so that

det(AB) = 0 = det(A)det(B).

If A is nonsingular, then A is the product of elementary matrices Ek, . . . , E1.

Since det(EC) = det(E)det(C) for any elementary matrix E and any matrix C, then

det(AB) = det
(
Ek · · · E1B

)
= det(Ek)det(Ek−1 · · · E2E1B)

= det(Ek) · · · det(E1)dim(B)

= det(Ek · · · E1)det(B)

= det(A)det(B).

This completes the proof. �


