Math 313 Lecture #13
§3.2: Properties of Determinants

It would be great if we could first row reduce an n X n matrix A and then compute its
determinant from the simpler row reduced matrix.

But alas, this method is doomed to fail: an invertible matrix A is row equivalent to [/
and the determinant of I (a diagonal matrix with 1’s on the main diagonal) is 1, but is
det(A) = det(I)?

But not all is lost: there is a way to recover the determinant of A from an echelon form
AND the row operations needed to get to that echelon form.

Theorem 3. Let A be a square matrix.

a. If B is obtained from A by adding a multiple of one row of A to another row of A,
then det(B) = det(A).

b. If B is obtained from A by switching two rows of A, then det(B) = —det(A).

c. If B is obtained from A by multiplying a row of A through by a scalar k, then

det(B) = kdet(A).
Idea of Proof. We use induction, where the base case is for a 2 x 2 matrix A.

You had homework that verified what some of the row operations did to the determinant
of a 2 x 2 matrix.

The effect of the remaining row operations on a 2 x 2 matrix are similarly verified.
Now assume that the statements of the Theorem hold for a £ x k matrix A with k > 2.

The effect of an elementary matrix F on A leaves at least one row of A in the same place
without changes in its entries, say the i*" row.

Cofactor expansion of B = EA across the i*" row results in
det(EA) = (—1)i+1a,~1det(Bu) + (—1)i+2ai2det(32i) —+ -+ (—1)Z+”amdet(Bm)
We recognize that the rows of each £ x k matrix B;; are obtained from the rows of each

k x k matrix A;; by the same type elementary row operations as F.

By the induction hypothesis we have det(B;;) = adet(4;;) for all i = 1,2,...,n where
a is 1 if E is scalar multiple of one row added to another, —1 if E' is a switching of two
rows, and r if E is scalar multiplying a row through by r.

We obtain
det(EA) = af(—=1)""andet(Ay) + (1) apdet(Ay) + - - - + (1) a;,det( Ay, )]

which says that det(EA) = det(E)det(A). O

We can use row reduction of a square matrix to find its determinant as long as we keep
track of the row operations that change the determinant.



Suppose an echelon form U is obtained from A by using only the row operations of
switching rows and adding multiples of one row to another row (which can always be
done without the third row operation).

If 7 is the number of row switches performed, then det(A) is (—1)"det(U).

The determinant of U is just the product of diagonal entries of U because U is in triangular
form.

Example. Use row reduction to find the determinant:
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Notice that we did not have to use the row operation of multiplying a row through by a
nonzero scalar. /]

We saw before that a 2 x 2 matrix A is invertible if and only if det(A) # 0.

This is also true for any n x n matrix, and adds another statement to the Inverse Matrix
Theorem.

Theorem 4. A square matrix A is invertible if and only if det(A) # 0.
Proof. Suppose A is invertible.

By the Inverse Matrix Theorem, A has n pivot positions, and these lie on the main
diagonal of A.

Hence for an echelon form U for A, obtained by using only r row exchanges and multiples
of one row added to another, we have det(A) = (—1)"det(U) where none of the main
diagonal entries of U are zero.



This implies that det(A) # 0.
Now suppose that det(A) # 0.

Then row reducing A to an echelon form U, using on r row switches and multiples of one
row added to another row, we have det(A) = (—1)"det(U).

With det(A) # 0, we have that none of the diagonal entries of U can be zero (as their
product is the determinant).

Thus every diagonal entry of U is pivot position for A.

By the Inverse Matrix Theorem, the matrix A is invertible. 0
What does the transpose do to the determinant of a square matrix?

Theorem 5. For an n x n matrix, we have det(AT) = det(A).

Idea of Proof. We use induction with n = 2 as the base case.

By the formula for the determinant of a 2 x 2 matrix A, we immediately get det(A”) =
det(A).

Now suppose for any £ x k matrix that transposition does not change the determinant.

Then the cofactor of a;; in a (k+ 1) X (k+ 1) matrix A equals the cofactor of aj; in AT
by the induction hypothesis because the cofactors involve k£ x k determinants.

Hence cofactor expansion across the first row of A equals the cofactor expansion down
the first column of AT. O

Recall for an elementary matrix E that det(EA) = det(E)det(A).

It would be great if this works when FE is not an elementary matrix. And it is great that
it does!

Theorem 6. If A and B are n X n matrices, then
det(AB) = det(A)det(B).
Proof. If A is singular, then AB is singular too (why?), so that
det(AB) = 0 = det(A)det(B).
If A is nonsingular, then A is the product of elementary matrices Ey, ..., E.
Since det(EC) = det(E)det(C) for any elementary matrix £ and any matrix C, then

det(AB) = det(Ek )
= det(Ek)det(Ek 1+ EyF B)
= det(E}) - - - det(FE;)dim(B)
= det(Ey - - - Ey)det(B)
= det(A)det(B).

This completes the proof. 0



