Math 313 Lecture \#14

§3.3: Cramer's Rule, Volume, and Linear Transformations

We make use of the multiplicative property $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ to derive Cramer's Rule for solving $A \vec{x}=\vec{b}$ when A is invertible for its unique solution $\vec{x}=A^{-1} \vec{b}$ without finding A^{-1}.
Cramer's Rule is also useful for theoretical purposes (such as in Math 334).
To set the stage for Cramer's Rule, we let $A=\left[\begin{array}{llll}\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}\end{array}\right]$ be an $n \times n$ matrix.
For \vec{b} in \mathbb{R}^{n} we form a new matrix $A_{i}(\vec{b})$ determined by $n-1$ columns of A defined by

$$
A_{i}(\vec{b})=\left[\begin{array}{lllll}
\vec{a}_{1} & \cdots & \vec{b} & \cdots & \vec{a}_{n}
\end{array}\right]
$$

where \vec{b} replaces the $i^{\text {th }}$ column of A.
Theorem 7 (Cramer's Rule). Let A be an invertible $n \times n$ matrix. For any \vec{b} in \mathbb{R}^{n}, the unique solution of $A \vec{x}=\vec{b}$ has entries

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}(\vec{b})\right)}{\operatorname{det}(A)}, i=1,2, \ldots, n
$$

Proof. For $I=\left[\begin{array}{llll}\vec{e}_{1} & \vec{e}_{2} & \cdots & \vec{e}_{n}\end{array}\right]$ we have for any $i=1,2, \ldots, n$ that

$$
\begin{aligned}
A I_{i}(\vec{x}) & =A\left[\begin{array}{lllll}
\vec{e}_{1} & \cdots & \vec{x} & \cdots & \vec{e}_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\vec{a}_{1} & \cdots & A \vec{x} & \cdots & \vec{a}_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\vec{a}_{1} & \cdots & \vec{b} & \cdots & \vec{a}_{n}
\end{array}\right] \\
& =A_{i}(\vec{b}) .
\end{aligned}
$$

By the multiplicative property of determinants applied to $A I_{i}(\vec{x})=A_{i}(\vec{b})$ we have

$$
\operatorname{det}(A) \operatorname{det}\left(I_{i}(\vec{x})\right)=\operatorname{det}\left(A_{i}(\vec{b})\right)
$$

The value of $\operatorname{det}\left(I_{i}(\vec{x})\right)$ is x_{i} by cofactor expansion along the $i^{\text {th }}$ row.
Because $\operatorname{det}(A) \neq 0$, we can solve for x_{i}, giving the desired formula.
Example. Use Cramer's Rule to find the solution of

$$
\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
3 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-3 \\
-1 \\
1
\end{array}\right]
$$

First we compute the determinant of the matrix:

$$
\left|\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
3 & 2 & 0
\end{array}\right|=(1)\left|\begin{array}{ll}
2 & 1 \\
2 & 0
\end{array}\right|+(2)\left|\begin{array}{ll}
0 & 2 \\
3 & 2
\end{array}\right|=-14
$$

Then we compute the determinants of $A_{1}(\vec{b}), A_{2}(\vec{b})$, and $A_{3}(\vec{b})$:

$$
\begin{aligned}
& \operatorname{det}\left(A_{1}(\vec{b})\right)=\left|\begin{array}{ccc}
-3 & 0 & 2 \\
-1 & 2 & 1 \\
1 & 2 & 0
\end{array}\right|=(1)\left|\begin{array}{ll}
0 & 2 \\
2 & 1
\end{array}\right|-(2)\left|\begin{array}{cc}
-3 & 2 \\
-1 & 1
\end{array}\right|=-4-2(-1)=-2 \\
& \operatorname{det}\left(A_{2}(\vec{b})\right)=\left|\begin{array}{ccc}
1 & -3 & 2 \\
0 & -1 & 1 \\
3 & 1 & 0
\end{array}\right|=(-1)\left|\begin{array}{cc}
1 & 2 \\
3 & 0
\end{array}\right|-(1)\left|\begin{array}{cc}
1 & -3 \\
3 & 1
\end{array}\right|=-(-6)-10=-4 \\
& \operatorname{det}\left(A_{3}(\vec{b})\right)=\left|\begin{array}{ccc}
1 & 0 & -3 \\
0 & 2 & -1 \\
3 & 2 & 1
\end{array}\right|=(1)\left|\begin{array}{cc}
2 & -1 \\
2 & 1
\end{array}\right|+(-3)\left|\begin{array}{ll}
0 & 2 \\
3 & 2
\end{array}\right|=4-3(-6)=22
\end{aligned}
$$

Thus the entries of the unique solution $\vec{x}=A^{-1} \vec{b}$ are

$$
x_{1}=\frac{-2}{-14}=\frac{1}{7}, \quad x_{2}=\frac{-4}{-14}=\frac{2}{7}, \quad x_{3}=\frac{22}{-14}=-\frac{11}{7} .
$$

You should check that this is indeed the solution. \checkmark
A Formula for the Inverse. We apply Cramer's Rule to find a formula for the inverse of an invertible matrix.

In doing this we will encounter a matrix $\operatorname{adj}(A)$, called the adjugate of A, whose entries are the cofactors $C_{i j}=(-1)^{i+j} \operatorname{det}\left(A_{i j}\right)$ in transposed position:

$$
\operatorname{adj}(A)=\left[\begin{array}{cccc}
C_{11} & C_{21} & \cdots & C_{n 1} \\
C_{12} & C_{22} & \cdots & C_{n 2} \\
\vdots & \vdots & \ddots & \vdots \\
C_{1 n} & C_{2 n} & \ldots & C_{n n}
\end{array}\right]
$$

Theorem 8. If A is an invertible $n \times n$ matrix, then

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)
$$

Proof. For an invertible A we have $A A^{-1}=I=\left[\begin{array}{llll}\vec{e}_{1} & \vec{e}_{2} & \cdots & \vec{e}_{n}\end{array}\right]$. If \vec{x} is the $j^{\text {th }}$ column of A^{-1}, then \vec{x} satisfies $A \vec{x}=\vec{e}_{j}$.
By Cramer's Rule, the $i^{\text {th }}$ entry of \vec{x}, which is the (i, j) entry of A^{-1}, is given by

$$
x_{i}=\frac{\operatorname{det}\left(A_{i}\left(\vec{e}_{j}\right)\right)}{\operatorname{det}(A)}
$$

Recall that $A_{j i}$ is the submatrix of A obtained by deleting the $j^{\text {th }}$ row and the $i^{\text {th }}$ column of A.

Observe that the non-zero entry of the $i^{\text {th }}$ column of $A_{i}\left(\vec{e}_{j}\right)$ occurs on the $j^{\text {th }}$ row.
Cofactor expansion down the $i^{\text {th }}$ column of $A_{i}\left(\vec{e}_{j}\right)$ gives

$$
\operatorname{det}\left(A_{i}\left(\vec{e}_{j}\right)\right)=(-1)^{j+i} \operatorname{det}\left(A_{j i}\right)=C_{j i} .
$$

Thus the (i, j) entry of A^{-1} is $C_{j i}$ divided by $\operatorname{det}(A)$.

Example. Use this new formula to find the inverse of

$$
A=\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
3 & 2 & 0
\end{array}\right]
$$

Recall that the determinant of the matrix A is $\operatorname{det}(A)=-14$.
We compute the entries of the adjugate of A :

$$
\operatorname{adj} A=\left[\begin{array}{ccc}
\left|\begin{array}{ll}
2 & 1 \\
2 & 0
\end{array}\right| & -\left|\begin{array}{ll}
0 & 1 \\
3 & 0
\end{array}\right| & \left|\begin{array}{ll}
0 & 2 \\
3 & 2
\end{array}\right| \\
-\left|\begin{array}{ll}
0 & 2 \\
2 & 0
\end{array}\right| & \left|\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right| & -\left|\begin{array}{ll}
1 & 0 \\
3 & 2
\end{array}\right| \\
\left|\begin{array}{ll}
0 & 2 \\
0 & 1
\end{array}\right| & -\left|\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right| & \left|\begin{array}{lll}
1 & 0
\end{array}\right|
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-2 & 3 & -6 \\
4 & -6 & -2 \\
-4 & -1 & 2
\end{array}\right]^{T}=\left[\begin{array}{ccc}
-2 & 4 & -4 \\
3 & -6 & -1 \\
-6 & -2 & 2
\end{array}\right] .
$$

We then compute the inverse:

$$
A^{-1}=\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)=\frac{1}{-14}\left[\begin{array}{ccc}
-2 & 4 & -4 \\
3 & -6 & -1 \\
-6 & -2 & 2
\end{array}\right]
$$

We can check this:

$$
A\left(\frac{1}{\operatorname{det}(A)} \operatorname{adj}(A)\right)=\frac{-1}{14}\left[\begin{array}{lll}
1 & 0 & 2 \\
0 & 2 & 1 \\
3 & 2 & 0
\end{array}\right]\left[\begin{array}{ccc}
-2 & 4 & -4 \\
3 & -6 & -1 \\
-6 & -2 & 2
\end{array}\right]=\frac{-1}{14}\left[\begin{array}{ccc}
-14 & 0 & 0 \\
0 & -14 & 0 \\
0 & 0 & -14
\end{array}\right] \checkmark
$$

Determinants as Area or Volume. When A is a 2×2 matrix, it columns determine a parallelogram in the plane, and when A is 3×3, its columns determine a parallelepiped in \mathbb{R}^{3}.

We give a geometric interpretation of the absolute value of the determinant of A as the area of the parallelogram or the volume of the parallelepiped.
Theorem 9. For a square matrix A, the value $|\operatorname{det}(A)|$ is (a) the area of the parallelogram determined by its columns when A is 2×2, and (b) the volume of the parallelepiped determined by its columns when A is 3×3.

Proof. (a) We present an argument here that differs from the book.
Let $A=\left[\begin{array}{ll}\vec{a}_{1} & \vec{a}_{2}\end{array}\right]$ with $\vec{a}_{1} \neq 0$ (for if $\vec{a}_{1}=0$, then the parallelogram with sides \vec{a}_{1} and \vec{a}_{2} has area 0 and $\operatorname{det}(A)=0$.
Now \vec{a}_{1} makes an angle θ with the positive horizontal axis (as measured in the counterclockwise sense).

Rotate both \vec{a}_{1} and \vec{a}_{2} by the same angle so that \vec{a}_{1} now points in the positive horizontal direction.

That is we apply the matrix

$$
R(\theta)=\left[\begin{array}{cc}
\cos (2 \pi-\theta) & -\sin (2 \pi-\theta) \\
\sin (2 \pi-\theta) & \cos (2 \pi-\theta)
\end{array}\right]
$$

to each column of A to get

$$
\left[R(\theta) \vec{a}_{1} \quad R(\theta) \vec{a}_{2}\right]=R(\theta) A
$$

Since $\operatorname{det}(R(\theta) A)=\operatorname{det}(R(\theta)) \operatorname{det}(A)$ and $\operatorname{det}\left(R(\theta)=\cos ^{2}(2 \pi-\theta)+\sin ^{2}(2 \pi-\theta)=1\right.$, then $\operatorname{det}(R(\theta) A)=\operatorname{det}(A)$, which is to say that rotating the sides \vec{a}_{1} and \vec{a}_{2} of the parallelogram by the same angle does not change the area of the parallelogram.
So WLOG we may assume that

$$
\vec{a}_{1}=\left[\begin{array}{l}
a \\
0
\end{array}\right]
$$

The line L be the line through $\overrightarrow{0}$ and \vec{a}_{1} is the horizontal axis.
Then $\vec{a}_{2}+L$ is the line through \vec{a}_{2} and parallel to L.
The vector $\vec{a}_{2}+c \vec{a}_{1}$ lies on the line $\vec{a}_{2}+L$ for any scalar c.
The parallelogram with sides \vec{a}_{1} and \vec{a}_{2} has the same area as the parallelogram with sides \vec{a}_{1} and $\vec{a}_{2}+c \vec{a}_{1}$ because both have the same base length and because the points \vec{a}_{2} and $\vec{a}_{2}+c \vec{a}_{1}$ on $\vec{a}_{2}+L$ have the same height (or perpendicular distance to L).
In other words, adding a multiple of one column to another column of A does not change the determinant of A.

We choose c so that $\vec{a}_{2}+c \vec{a}_{1}$ has the form

$$
\left[\begin{array}{l}
0 \\
d
\end{array}\right] .
$$

Thus we have

$$
|\operatorname{det}(A)|=\left|\operatorname{det}\left[\begin{array}{ll}
a & 0 \\
0 & d
\end{array}\right]\right|=|a d|
$$

which is the area of the rectangle with base length $|a|$ and height $|d|$.
(b) This argument is left for you to read in the text.

Determinants and Linear Transformations The unit rectangle U in \mathbb{R}^{2} has sides \vec{e}_{1} and \vec{e}_{2}; it is the set

$$
U=\left\{\left(u_{1} \vec{e}_{1}+u_{2} \vec{e}_{2}: 0 \leq u_{1}, u_{2} \leq 1\right\}\right.
$$

and it has area 1.
If $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ is linear, what is the area of $T(U)$?
The image of each side \vec{e}_{i} under T is $T\left(\vec{e}_{i}\right)$, which are the columns of the standard matrix A of T, and so the area of $T(U)$ is precisely $|\operatorname{det}(A)|$.

How does T affect the area of other parallelograms?
Theorem 10. Let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be a linear transformation with its standard 2×2 matrix A. If S is a parallelogram in \mathbb{R}^{2} with sides \vec{b}_{1} and \vec{b}_{2}, then the area of $T(S)$ is $|\operatorname{det}(A)|$ times the area of S. A similar statement holds for a linear transformation $T: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ for all $n \geq 2$.
Proof. Write $A=\left[\begin{array}{ll}T\left(\vec{e}_{1}\right) & T\left(\vec{e}_{2}\right)\end{array}\right]=\left[\begin{array}{ll}\vec{a}_{1} & \vec{a}_{2}\end{array}\right]$.
The parallelogram S with sides \vec{b}_{1} and \vec{b}_{2} is the set

$$
S=\left\{s_{1} \vec{b}_{1}+s_{2} \vec{b}_{2}: 0 \leq s_{1}, s_{2} \leq 1\right\}
$$

Its image under T is the set of points

$$
\begin{aligned}
T(S) & =\left\{s_{1} T\left(\vec{b}_{1}\right)+s_{2} T\left(\vec{b}_{2}\right): 0 \leq s_{1}, s_{2} \leq 1\right\} \\
& =\left\{s_{1} A \vec{b}_{1}+s_{2} A \vec{b}_{2}: 0 \leq s_{1}, s_{2} \leq 1\right\}
\end{aligned}
$$

So $T(S)$ is the parallelogram with sides $A \vec{b}_{1}$ and $A \vec{b}_{2}$, and so its area is the absolute value of the determinant of $A\left[\begin{array}{ll}\vec{b}_{1} & \vec{b}_{2}\end{array}\right]=A B$.
Thus the area of $T(S)$ is the absolute value of $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$ which is $|\operatorname{det}(A)|$ times the area of S.

The conclusion of Theorem 10 also holds when the parallelogram does not have a corner at the origin because translation of any parallelogram to the origin does not change its area.

The conclusion of Theorem 10 further holds when the area is not a parallelogram because any finite area of the plane can be divided into many small parallelograms.
Example. What is the area of the ellipse E determined by

$$
\frac{x_{1}^{2}}{a^{2}}+\frac{x_{2}^{2}}{b^{2}} \leq 1 ?
$$

WLOG we assume $a>0$ and $b>0$.
We know how to compute the area of the unit circle D determined by $x_{1}^{2}+x_{2}^{2} \leq 1$; the area is $\pi(1)^{2}=\pi$.
If we can show that the ellipse E is the image of D under a linear transformation T, then we would obtain the area of the ellipse through the generalization of Theorem 10.
Consider the linear transformation $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ whose standard matrix is

$$
A=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]
$$

Any point $\left(x_{1}, x_{2}\right)$ in the ellipse E is the image under T of $\left(x_{1} / a, x_{2} / b\right)$ in unit circle D, and so $T(D)=E$.
Thus the area of E is $|\operatorname{det}(A)|$ times area of D which is $\pi a b$.

