
Math 313 Lecture #14
§3.3: Cramer’s Rule, Volume, and Linear Transformations

We make use of the multiplicative property det(AB) = det(A)det(B) to derive Cramer’s

Rule for solving A~x = ~b when A is invertible for its unique solution ~x = A−1~b without
finding A−1.

Cramer’s Rule is also useful for theoretical purposes (such as in Math 334).

To set the stage for Cramer’s Rule, we let A =
[
~a1 ~a2 · · · ~an

]
be an n× n matrix.

For ~b in Rn we form a new matrix Ai(~b) determined by n− 1 columns of A defined by

Ai(~b) =
[
~a1 · · · ~b · · · ~an

]
where ~b replaces the ith column of A.

Theorem 7 (Cramer’s Rule). Let A be an invertible n×n matrix. For any ~b in Rn, the

unique solution of A~x = ~b has entries

xi =
det(Ai(~b))

det(A)
, i = 1, 2, . . . , n.

Proof. For I =
[
~e1 ~e2 · · · ~en

]
we have for any i = 1, 2, . . . , n that

AIi(~x) = A
[
~e1 · · · ~x · · · ~en

]
=
[
~a1 · · · A~x · · · ~an

]
=
[
~a1 · · · ~b · · · ~an

]
= Ai(~b).

By the multiplicative property of determinants applied to AIi(~x) = Ai(~b) we have

det(A)det(Ii(~x)) = det(Ai(~b)).

The value of det(Ii(~x)) is xi by cofactor expansion along the ith row.

Because det(A) 6= 0, we can solve for xi, giving the desired formula. �

Example. Use Cramer’s Rule to find the solution of1 0 2
0 2 1
3 2 0

x1x2
x3

 =

−3
−1
1

 .
First we compute the determinant of the matrix:∣∣∣∣∣∣

1 0 2
0 2 1
3 2 0

∣∣∣∣∣∣ = (1)

∣∣∣∣2 1
2 0

∣∣∣∣+ (2)

∣∣∣∣0 2
3 2

∣∣∣∣ = −14.



Then we compute the determinants of A1(~b), A2(~b), and A3(~b):

det(A1(~b)) =

∣∣∣∣∣∣
−3 0 2
−1 2 1
1 2 0

∣∣∣∣∣∣ = (1)

∣∣∣∣0 2
2 1

∣∣∣∣− (2)

∣∣∣∣−3 2
−1 1

∣∣∣∣ = −4− 2(−1) = −2,

det(A2(~b)) =

∣∣∣∣∣∣
1 −3 2
0 −1 1
3 1 0

∣∣∣∣∣∣ = (−1)

∣∣∣∣1 2
3 0

∣∣∣∣− (1)

∣∣∣∣1 −3
3 1

∣∣∣∣ = −(−6)− 10 = −4,

det(A3(~b)) =

∣∣∣∣∣∣
1 0 −3
0 2 −1
3 2 1

∣∣∣∣∣∣ = (1)

∣∣∣∣2 −1
2 1

∣∣∣∣+ (−3)

∣∣∣∣0 2
3 2

∣∣∣∣ = 4− 3(−6) = 22.

Thus the entries of the unique solution ~x = A−1~b are

x1 =
−2

−14
=

1

7
, x2 =

−4

−14
=

2

7
, x3 =

22

−14
= −11

7
.

You should check that this is indeed the solution. X

A Formula for the Inverse. We apply Cramer’s Rule to find a formula for the inverse
of an invertible matrix.

In doing this we will encounter a matrix adj(A), called the adjugate of A, whose entries
are the cofactors Cij = (−1)i+jdet(Aij) in transposed position:

adj(A) =


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...
C1n C2n . . . Cnn

 .
Theorem 8. If A is an invertible n× n matrix, then

A−1 =
1

det(A)
adj(A).

Proof. For an invertible A we have AA−1 = I =
[
~e1 ~e2 · · · ~en

]
.

If ~x is the jth column of A−1, then ~x satisfies A~x = ~ej.

By Cramer’s Rule, the ith entry of ~x, which is the (i, j) entry of A−1, is given by

xi =
det(Ai(~ej))

det(A)
.

Recall that Aji is the submatrix of A obtained by deleting the jth row and the ith column
of A.

Observe that the non-zero entry of the ith column of Ai(~ej) occurs on the jth row.

Cofactor expansion down the ith column of Ai(~ej) gives

det(Ai(~ej)) = (−1)j+idet(Aji) = Cji.

Thus the (i, j) entry of A−1 is Cji divided by det(A). �



Example. Use this new formula to find the inverse of

A =

1 0 2
0 2 1
3 2 0

 .
Recall that the determinant of the matrix A is det(A) = −14.

We compute the entries of the adjugate of A:

adj A =



∣∣∣∣2 1
2 0

∣∣∣∣ −
∣∣∣∣0 1
3 0

∣∣∣∣ ∣∣∣∣0 2
3 2

∣∣∣∣
−
∣∣∣∣0 2
2 0

∣∣∣∣ ∣∣∣∣1 2
3 0

∣∣∣∣ −
∣∣∣∣1 0
3 2

∣∣∣∣∣∣∣∣0 2
2 1

∣∣∣∣ −
∣∣∣∣1 2
0 1

∣∣∣∣ ∣∣∣∣1 0
0 2

∣∣∣∣



T

=

−2 3 −6
4 −6 −2
−4 −1 2

T

=

−2 4 −4
3 −6 −1
−6 −2 2

 .

We then compute the inverse:

A−1 =
1

det(A)
adj(A) =

1

−14

−2 4 −4
3 −6 −1
−6 −2 2

 .
We can check this:

A

(
1

det(A)
adj(A)

)
=
−1

14

1 0 2
0 2 1
3 2 0

−2 4 −4
3 −6 −1
−6 −2 2

 =
−1

14

−14 0 0
0 −14 0
0 0 −14

X.
Determinants as Area or Volume. When A is a 2×2 matrix, it columns determine
a parallelogram in the plane, and when A is 3×3, its columns determine a parallelepiped
in R3.

We give a geometric interpretation of the absolute value of the determinant of A as the
area of the parallelogram or the volume of the parallelepiped.

Theorem 9. For a square matrix A, the value |det(A)| is (a) the area of the parallelo-
gram determined by its columns when A is 2×2, and (b) the volume of the parallelepiped
determined by its columns when A is 3× 3.

Proof. (a) We present an argument here that differs from the book.

Let A =
[
~a1 ~a2

]
with ~a1 6= 0 (for if ~a1 = 0, then the parallelogram with sides ~a1 and ~a2

has area 0 and det(A) = 0.

Now ~a1 makes an angle θ with the positive horizontal axis (as measured in the counter-
clockwise sense).

Rotate both ~a1 and ~a2 by the same angle so that ~a1 now points in the positive horizontal
direction.



That is we apply the matrix

R(θ) =

[
cos(2π − θ) − sin(2π − θ)
sin(2π − θ) cos(2π − θ)

]
to each column of A to get [

R(θ)~a1 R(θ)~a2
]

= R(θ)A.

Since det(R(θ)A) = det(R(θ))det(A) and det(R(θ) = cos2(2π − θ) + sin2(2π − θ) = 1,
then det(R(θ)A) = det(A), which is to say that rotating the sides ~a1 and ~a2 of the
parallelogram by the same angle does not change the area of the parallelogram.

So WLOG we may assume that

~a1 =

[
a
0

]
.

The line L be the line through ~0 and ~a1 is the horizontal axis.

Then ~a2 + L is the line through ~a2 and parallel to L.

The vector ~a2 + c~a1 lies on the line ~a2 + L for any scalar c.

The parallelogram with sides ~a1 and ~a2 has the same area as the parallelogram with sides
~a1 and ~a2 + c~a1 because both have the same base length and because the points ~a2 and
~a2 + c~a1 on ~a2 + L have the same height (or perpendicular distance to L).

In other words, adding a multiple of one column to another column of A does not change
the determinant of A.

We choose c so that ~a2 + c~a1 has the form[
0
d

]
.

Thus we have

|det(A)| =
∣∣∣∣det

[
a 0
0 d

]∣∣∣∣ = |ad|

which is the area of the rectangle with base length |a| and height |d|.
(b) This argument is left for you to read in the text. �

Determinants and Linear Transformations The unit rectangle U in R2 has sides
~e1 and ~e2; it is the set

U = {(u1~e1 + u2~e2 : 0 ≤ u1, u2 ≤ 1},

and it has area 1.

If T : R2 → R2 is linear, what is the area of T (U)?

The image of each side ~ei under T is T (~ei), which are the columns of the standard matrix
A of T , and so the area of T (U) is precisely |det(A)|.



How does T affect the area of other parallelograms?

Theorem 10. Let T : R2 → R2 be a linear transformation with its standard 2×2 matrix
A. If S is a parallelogram in R2 with sides ~b1 and ~b2, then the area of T (S) is |det(A)|
times the area of S. A similar statement holds for a linear transformation T : Rn → Rn

for all n ≥ 2.

Proof. Write A =
[
T (~e1) T (~e2)

]
=
[
~a1 ~a2

]
.

The parallelogram S with sides ~b1 and ~b2 is the set

S = {s1~b1 + s2~b2 : 0 ≤ s1, s2 ≤ 1}.

Its image under T is the set of points

T (S) = {s1T (~b1) + s2T (~b2) : 0 ≤ s1, s2 ≤ 1}
= {s1A~b1 + s2A~b2 : 0 ≤ s1, s2 ≤ 1}.

So T (S) is the parallelogram with sides A~b1 and A~b2, and so its area is the absolute value

of the determinant of A
[
~b1 ~b2

]
= AB.

Thus the area of T (S) is the absolute value of det(AB) = det(A)det(B) which is |det(A)|
times the area of S. �

The conclusion of Theorem 10 also holds when the parallelogram does not have a corner
at the origin because translation of any parallelogram to the origin does not change its
area.

The conclusion of Theorem 10 further holds when the area is not a parallelogram because
any finite area of the plane can be divided into many small parallelograms.

Example. What is the area of the ellipse E determined by

x21
a2

+
x22
b2
≤ 1?

WLOG we assume a > 0 and b > 0.

We know how to compute the area of the unit circle D determined by x21 + x22 ≤ 1; the
area is π(1)2 = π.

If we can show that the ellipse E is the image of D under a linear transformation T , then
we would obtain the area of the ellipse through the generalization of Theorem 10.

Consider the linear transformation T : R2 → R2 whose standard matrix is

A =

[
a 0
0 b

]
.

Any point (x1, x2) in the ellipse E is the image under T of (x1/a, x2/b) in unit circle D,
and so T (D) = E.

Thus the area of E is |det(A)| times area of D which is πab.


