Math 313 Lecture #15 §4.1: Vector Spaces and Subspaces

Vector Spaces. Many sets of mathematical objects have the algebraic properties that \mathbb{R}^n does.

They have a scalar multiplication and an addition that behave just like those of \mathbb{R}^n .

The idea of a vector space is a unifying principle in that properties of the vectors depend only on the properties of the scalar multiplication and addition but not on the elements of the vector space.

Definition. A vector space is a set V of objects denoted as \vec{u} , \vec{v} , \vec{w} , etc., on which are defined two operations, scalar multiplication $\alpha \vec{u}$ and addition $\vec{u} + \vec{v}$, which operations satisfy the following axioms:

- 1. the sum $\vec{u} + \vec{v}$ is in V for all \vec{u}, \vec{v} in V,
- 2. $\vec{x} + \vec{y} = \vec{y} + \vec{x}$ for all $\vec{x}, \vec{y} \in V$,
- 3. $(\vec{x} + \vec{y}) + \vec{w} = \vec{x} + (\vec{y} + \vec{w})$ for all $\vec{x}, \vec{y}, \vec{w} \in V$,
- 4. There exists an element $\vec{0}$ in V for which $\vec{x} + \vec{0} = \vec{x}$ for each $\vec{x} \in V$,
- 5. For each $\vec{x} \in V$ there is an element $-\vec{x}$ such that $\vec{x} + (-\vec{x}) = \vec{0}$,
- 6. the scalar multiple $\alpha \vec{u}$ is in V for all α and for all \vec{u} in V,
- 7. $\alpha(\vec{x} + \vec{y}) = \alpha \vec{x} + \alpha \vec{y}$ for all $\alpha \in \mathbb{R}$ and all $\vec{x}, \vec{y} \in V$,
- 8. $(\alpha + \beta)\vec{x} = \alpha\vec{x} + \beta\vec{x}$ for all $\alpha, \beta \in \mathbb{R}$ and all $\vec{x} \in V$,
- 9. $(\alpha\beta)\vec{x} = \alpha(\beta\vec{x})$ for all $\alpha\beta \in \mathbb{R}$ and all $\vec{x} \in V$,
- 10. $1\vec{x} = \vec{x}$ for all $\vec{x} \in V$.

Using ONLY these properties, we can show that the vector $\vec{0}$ of Axiom 4 is unique, that the negative $-\vec{u}$ of Axiom 5 is unique, that $0\vec{u} = \vec{0}$, that $\alpha\vec{0} = \vec{0}$, and that $-\vec{u} = (-1)\vec{u}$.

The Vector Space $\mathbb{R}^{m \times n}$. The set of all $m \times n$ matrices is denoted by $\mathbb{R}^{m \times n}$.

The set $\mathbb{R}^{m \times n}$ has a scalar multiplication and addition defined on it: if $A = (a_{ij}), B = (b_{ij})$ are $m \times n$ matrices, and α is a scalar, then

 $\alpha A = (\alpha a_{ij})$ and $A + B = (a_{ij} + b_{ij}).$

The algebraic operations of scalar multiplication and of addition obey the ten axioms of a vector space: these rules are nothing more than the rules of matrix algebra.

The Vector Space C[a, b]. Now for a set of "objects" you may not have thought of as a vector space.

Let [a, b] be a closed interval with finite nonzero length, i.e., $-\infty < a < b < \infty$.

Let C[a, b] denote the set of functions continuous on [a, b] (where continuity at the endpoints is understood as one-sided). On C[a, b] there is a scalar multiplication: if $\alpha \in \mathbb{R}$ and $f \in C[a, b]$, then the scalar multiple of f by α is the continuous function

$$(\alpha f)(x) = \alpha f(x), \ x \in [a, b].$$

On C[a, b] there is an addition: if f and g are in C[a, b], then the sum of f and g is the continuous function

$$(f+g)(x) = f(x) + g(x), \ x \in [a,b].$$

Axioms 2 and 3 are satisfied here:

$$(f+g)(x) = f(x) + g(x) = g(x) + f(x) = (g+f)(x),$$

$$((f+g)+h)(x) = (f+g)(x) + h(x) = f(x) + g(x) + h(x)$$

$$= f(x) + (g(x)+h(x)) = (f+(g+h))(x).$$

What is the zero vector in C[a, b]? It is the zero function,

$$z(x) = 0$$
 for all $z \in [a, b]$.

It satisfies (f + z)(x) = f(x). Thus axiom 4 is satisfied.

The rest of the axioms are left to you to verify.

The Vector Space \mathbb{P}_n . Let \mathbb{P}_n denote the set of all polynomials of degree at most n, having real coefficients.

Scalar multiplication and addition on \mathbb{P}_n are defined like those on C[a, b]:

$$(\alpha p)(x) = \alpha p(x), \quad (p+q)(x) = p(x) + q(x).$$

The scalar multiple of a polynomial of degree at most n, with real coefficients, is a polynomial of degree at most n, with real coefficients.

The addition of two polynomials of degree at most n, with real coefficients, is a polynomial of degree at most n, with real coefficients.

Thus these algebraic operations on \mathbb{P}_n satisfy axioms 1 and 6.

What is the zero vector in \mathbb{P}_n ? It is the zero polynomial,

$$z(x) = 0x^n + \dots + 0x + 0.$$

It is left to you to verify that the other axioms are satisfied.

Subspaces. Certain subsets of a vector space V are themselves vector spaces.

To detect which subsets H of V are subspaces requires verifying only three of the axioms in H, because the rest following from the axioms of V.

Definition. A subspace of a vector space V is a subset H for which

- a. *H* contains the zero vector $\vec{0}$ of *V*,
- b. *H* is closed under addition, i.e., for every \vec{u} and \vec{w} are in *H* we have $\vec{u} + \vec{v}$ is in *H*,
- c. *H* is closed under scalar multiplication, i.e., for every \vec{u} in *H* and every scalar α , we have $\alpha \vec{u}$ is in *H*.

Example. Let $S = \left\{ \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} \in \mathbb{R}^{2 \times 2} : a_{11} + a_{22} = 0 \right\}.$

We check the three conditions in the definition of a subspace. The zero 2×2 matrix 0 satisfies $a_{11} + a_{22} = 0$, and so $0 \in S$. If $\alpha \in \mathbb{R}$, $A = (a_{ij}) \in S$, and $B = (b_{ij}) \in S$, then

$$\alpha A = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{bmatrix}$$

satisfies $\alpha a_{11} + \alpha a_{22} = \alpha (a_{11} + a_{22}) = 0$, and

$$A + B = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

satisfies $(a_{11} + b_{11}) + (a_{22} + b_{22}) = (a_{11} + a_{22}) + (b_{11} + b_{22}) = 0.$ Thus S is a subspace of $\mathbb{R}^{2 \times 2}$.

Example. Let \mathbb{P} be the set of all polynomials with real coefficients. The subset \mathbb{P}_n of polynomials of degree at most n is a subspace of \mathbb{P} . Example. Is the subset

$$H = \left\{ \begin{bmatrix} s \\ t \\ 0 \end{bmatrix} : s, t \in \mathbb{R} \right\}$$

a subspace of \mathbb{R}^3 ?

Well, H contains $\vec{0}$, scalar multiples of elements of H are in H, and the sum of any two vectors in H is in H, and so H is a subspace of \mathbb{R}^3 .

Is H just \mathbb{R}^2 ? It isn't. Why not?

Example. Let L be a line in the plane \mathbb{R}^2 that does not pass through the origin.

Is L a subspace of \mathbb{R}^2 ? No, why not? It does not contain $\vec{0}$, scalar multiples of vectors in L are not in L, and sums of vectors in L are not in L.

Example. Let $S = \{p(x) \in \mathbb{P}_5 : p(1) + p'(1) = 0\}$, the subset of those polynomials of degree at most 5 for which p(1) plus its derivative p'(1) equals 0.

The zero polynomial z(x) satisfies z(1) + z'(1) = 0, and so $z(x) \in S$.

If $\alpha \in \mathbb{R}$, $p(x) \in S$, and $q(x) \in S$, then $\alpha p(x)$ satisfies

$$\alpha p(1) + \alpha p'(1) = \alpha (p(1) + p'(1)) = 0,$$

and (p+q)(x) satisfies

$$(p(1) + q(1)) + (p'(1) + q'(1)) = (p(1) + p'(1)) + (q(1) + q'(1)) = 0.$$

Thus the subset S is a subspace of \mathbb{P}_5 .

A Subspace Spanned by a Set. A common way of describing a subspace is by the means of linear combinations.

Theorem 1. Let V be a vector space and $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k$ vectors in V. Then the set $H = \text{Span}\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_k\}$ is a subspace of V.

Proof. The "trivial" linear combination

$$0\vec{v}_1 + 0\vec{v}_2 + \dots + 0\vec{v}_k = \vec{0} \in H.$$

For any scalar α and any $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \cdots + c_k \vec{v}_k \in H$, we have

$$\alpha \vec{v} = (\alpha c_1)\vec{v}_1 + (\alpha c_2)\vec{v}_2 + \dots + (\alpha c_k)\vec{v}_k \in H,$$

For two vectors $\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_k \vec{v}_k$ and $\vec{u} = d_1 \vec{v}_1 + d_2 \vec{v}_2 + \dots + d_k \vec{v}_k$ we have

$$\vec{v} + \vec{u} = (c_1 + d_1)\vec{v}_1 + (c_2 + d_2)\vec{v}_2 + \dots + (c_k + d_k)\vec{v}_k \in H.$$

Thus H is a subspace of V.

[Notice how these calculations have nothing to do with what the actual vectors in V are, but only with the algebraic properties of scalar multiplication and addition.]

We call Span{ $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ } the **subspace spanned** (or **generated**) by { $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ }. A **spanning** (or **generating**) set for a subspace H of V is a set { $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ } for which H =Span{ $\vec{v_1}, \vec{v_2}, \ldots, \vec{v_k}$ }.

Example. For an $m \times n$ matrix A, suppose that the solution set H of $A\vec{x} = \vec{0}$ has the form $\vec{x} = s\vec{a} + t\vec{b}$.

Then the solution set H is the subspace of \mathbb{R}^n spanned by $\{\vec{a}, \vec{b}\}$.