
Math 313 Lecture #15
§4.1: Vector Spaces and Subspaces

Vector Spaces. Many sets of mathematical objects have the algebraic properties that
Rn does.

They have a scalar multiplication and an addition that behave just like those of Rn.

The idea of a vector space is a unifying principle in that properties of the vectors depend
only on the properties of the scalar multiplication and addition but not on the elements
of the vector space.

Definition. A vector space is a set V of objects denoted as ~u, ~v, ~w, etc., on which
are defined two operations, scalar multiplication α~u and addition ~u+~v, which operations
satisfy the following axioms:

1. the sum ~u+ ~v is in V for all ~u,~v in V ,

2. ~x+ ~y = ~y + ~x for all ~x, ~y ∈ V ,

3. (~x+ ~y) + ~w = ~x+ (~y + ~w) for all ~x, ~y, ~w ∈ V ,

4. There exists an element ~0 in V for which ~x+~0 = ~x for each ~x ∈ V ,

5. For each ~x ∈ V there is an element −~x such that ~x+ (−~x) = ~0,

6. the scalar multiple α~u is in V for all α and for all ~u in V ,

7. α(~x+ ~y) = α~x+ α~y for all α ∈ R and all ~x, ~y ∈ V ,

8. (α + β)~x = α~x+ β~x for all α, β ∈ R and all ~x ∈ V ,

9. (αβ)~x = α(β~x) for all αβ ∈ R and all ~x ∈ V ,

10. 1~x = ~x for all ~x ∈ V .

Using ONLY these properties, we can show that the vector ~0 of Axiom 4 is unique, that
the negative −~u of Axiom 5 is unique, that 0~u = ~0, that α~0 = ~0, and that −~u = (−1)~u.

The Vector Space Rm×n. The set of all m× n matrices is denoted by Rm×n.

The set Rm×n has a scalar multiplication and addition defined on it: ifA = (aij), B = (bij)
are m× n matrices, and α is a scalar, then

αA = (αaij) and A+B = (aij + bij).

The algebraic operations of scalar multiplication and of addition obey the ten axioms of
a vector space: these rules are nothing more than the rules of matrix algebra.

The Vector Space C[a, b]. Now for a set of “objects” you may not have thought of
as a vector space.

Let [a, b] be a closed interval with finite nonzero length, i.e., −∞ < a < b <∞.

Let C[a, b] denote the set of functions continuous on [a, b] (where continuity at the end-
points is understood as one-sided).



On C[a, b] there is a scalar multiplication: if α ∈ R and f ∈ C[a, b], then the scalar
multiple of f by α is the continuous function

(αf)(x) = αf(x), x ∈ [a, b].

On C[a, b] there is an addition: if f and g are in C[a, b], then the sum of f and g is the
continuous function

(f + g)(x) = f(x) + g(x), x ∈ [a, b].

Axioms 2 and 3 are satisfied here:

(f + g)(x) = f(x) + g(x) = g(x) + f(x) = (g + f)(x),(
(f + g) + h

)
(x) = (f + g)(x) + h(x) = f(x) + g(x) + h(x)

= f(x) + (g(x) + h(x)) =
(
f + (g + h)

)
(x).

What is the zero vector in C[a, b]? It is the zero function,

z(x) = 0 for all z ∈ [a, b].

It satisfies (f + z)(x) = f(x). Thus axiom 4 is satisfied.

The rest of the axioms are left to you to verify.

The Vector Space Pn. Let Pn denote the set of all polynomials of degree at most n,
having real coefficients.

Scalar multiplication and addition on Pn are defined like those on C[a, b]:

(αp)(x) = αp(x), (p+ q)(x) = p(x) + q(x).

The scalar multiple of a polynomial of degree at most n, with real coefficients, is a
polynomial of degree at most n, with real coefficients.

The addition of two polynomials of degree at most n, with real coefficients, is a polynomial
of degree at most n, with real coefficients.

Thus these algebraic operations on Pn satisfy axioms 1 and 6.

What is the zero vector in Pn? It is the zero polynomial,

z(x) = 0xn + · · ·+ 0x+ 0.

It is left to you to verify that the other axioms are satisfied.

Subspaces. Certain subsets of a vector space V are themselves vector spaces.

To detect which subsets H of V are subspaces requires verifying only three of the axioms
in H, because the rest following from the axioms of V .

Definition. A subspace of a vector space V is a subset H for which

a. H contains the zero vector ~0 of V ,

b. H is closed under addition, i.e., for every ~u and ~w are in H we have ~u+~v is in H,

c. H is closed under scalar multiplication, i.e., for every ~u in H and every scalar α,
we have α~u is in H.



Example. Let S =

{[
a11 a12
a21 a22

]
∈ R2×2 : a11 + a22 = 0

}
.

We check the three conditions in the definition of a subspace.

The zero 2× 2 matrix 0 satisfies a11 + a22 = 0, and so 0 ∈ S.

If α ∈ R, A = (aij) ∈ S, and B = (bij) ∈ S, then

αA =

[
αa11 αa12
αa21 αa22

]
satisfies αa11 + αa22 = α(a11 + a22) = 0, and

A+B =

[
a11 + b11 a12 + b12
a21 + b21 a22 + b22

]
satisfies (a11 + b11) + (a22 + b22) = (a11 + a22) + (b11 + b22) = 0.

Thus S is a subspace of R2×2.

Example. Let P be the set of all polynomials with real coefficients.

The subset Pn of polynomials of degree at most n is a subspace of P.

Example. Is the subset

H =


st

0

 : s, t ∈ R


a subspace of R3?

Well, H contains ~0, scalar multiples of elements of H are in H, and the sum of any two
vectors in H is in H, and so H is a subspace of R3.

Is H just R2? It isn’t. Why not?

Example. Let L be a line in the plane R2 that does not pass through the origin.

Is L a subspace of R2? No, why not? It does not contain ~0, scalar multiples of vectors
in L are not in L, and sums of vectors in L are not in L.

Example. Let S = {p(x) ∈ P5 : p(1) + p′(1) = 0}, the subset of those polynomials of
degree at most 5 for which p(1) plus its derivative p′(1) equals 0.

The zero polynomial z(x) satisfies z(1) + z′(1) = 0, and so z(x) ∈ S.

If α ∈ R, p(x) ∈ S, and q(x) ∈ S, then αp(x) satisfies

αp(1) + αp′(1) = α
(
p(1) + p′(1)

)
= 0,

and (p+ q)(x) satisfies(
p(1) + q(1)

)
+
(
p′(1) + q′(1)

)
=
(
p(1) + p′(1)

)
+
(
q(1) + q′(1)

)
= 0.

Thus the subset S is a subspace of P5.



A Subspace Spanned by a Set. A common way of describing a subspace is by the
means of linear combinations.

Theorem 1. Let V be a vector space and ~v1, ~v2, . . . , ~vk vectors in V . Then the set
H = Span{~v1, ~v2, . . . , ~vk} is a subspace of V .

Proof. The “trivial” linear combination

0~v1 + 0~v2 + · · ·+ 0~vk = ~0 ∈ H.

For any scalar α and any ~v = c1~v1 + c2~v2 + · · ·+ ck~vk ∈ H, we have

α~v = (αc1)~v1 + (αc2)~v2 + · · ·+ (αck)~vk ∈ H,

For two vectors ~v = c1~v1 + c2~v2 + · · ·+ ck~vk and ~u = d1~v1 + d2~v2 + · · ·+ dk~vk we have

~v + ~u = (c1 + d1)~v1 + (c2 + d2)~v2 + · · ·+ (ck + dk)~vk ∈ H.

Thus H is a subspace of V . �

[Notice how these calculations have nothing to do with what the actual vectors in V are,
but only with the algebraic properties of scalar multiplication and addition.]

We call Span{~v1, ~v2, . . . , ~vk} the subspace spanned (or generated) by {~v1, ~v2, . . . , ~vk}.
A spanning (or generating) set for a subspace H of V is a set {~v1, ~v2, . . . , ~vk} for which
H = Span{~v1, ~v2, . . . , ~vk}.
Example. For an m× n matrix A, suppose that the solution set H of A~x = ~0 has the

form ~x = s~a+ t~b.

Then the solution set H is the subspace of Rn spanned by {~a,~b}.


