
Math 313 Lecture #17
§4.3: Linearly Independent Sets; Bases

Having a spanning set of a subspace of a vector space enables us to describe all of the
vectors in the subspace in terms of linear combination of the spanning set: know a few
vectors, know all the vectors.

Not all spanning sets are of the same value: some are far superior to others.

We will learn today how to find the best possible spanning sets for subspaces.

To do this, we generalize (and review) the definitions of linear independence and linear
dependence from vectors in Rn to vectors in a vector space V .

Defintion. A set of vectors {~v1, ~v2, . . . , ~vp} in a vector space V is linearly independent
if the vector equation

c1~v1 + c2~v2 + · · ·+ cp~vp = ~0

has only the trivial solution c1 = c2 = · · · = cp = 0.

Otherwise the set of vectors is linearly dependent, i.e., we can satisfy the vector equation
with at least some ci 6= 0 (a nontrivial solution).

Before we learned to detect linear independence by row reducing a matrix whose columns
were the elements of the given set of vectors in Rn.

For an arbitrary vector space V , the vectors are not column vectors in Rn, so that we
have to work with the above vector equation directly.

But we still have tools (theorems) to help us identify linearly dependent or linearly
independent sets.

Theorem 4. A set {~v1, ~v2, . . . , ~vp} of two or more vectors in a vector space V with
~v1 6= ~0, are linearly dependent if and only if there is some ~vj (with j ≥ 2) such that vj is
a linear combination of the preceding vectors ~v1, ~v2, . . . , ~vj−1.

The proof of this is hopefully by now not that difficult, and will be skipped.

Example. Is the set of polynomials {2 + t, 1− t, 1 + t} in P1 linearly independent?

Label the polynomials p1(t) = 2 + t, p2(t) = 1− t, and p3(t) = 1 + t.

Notice that
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Since p3 is a linear combination of p1 and p2, the set {p1, p2, p3} is linearly dependent by
Theorem 4.

However the set {p1, p2} is linearly independent because p1 is not a scalar multiple of p2,
nor is p2 a scalar multiple of p1.

Does the linearly independent set {p1, p2} span P1? Is every polynomial p in P1 a linear
combination of the element of the linearly independent set {p1, p2}?
The answer is yes. / / / /



This finding of a linearly independent set in a vector space (or subspace) that spans the
vector space (or subspace) illustrates the notion of best possible spanning set, and we
give is a proper name.

Definition. Let H be a subspace of a vector space. A set of vectors B = {~b1,~b2, . . . ,~bp}
in V is a basis for H if

(i) B is a linearly independent set, and

(ii) B spans H.

Since V is a subspace of V , this definition also applies to V , so that a basis of V is a
linearly independent set of vectors in V that span V .

Example. A basis for the vector space Rn are the columns of the n×n identity matrix,
namely,

~e1 =


1
0
...
0

 , ~e2 =


0
1
...
0

 , . . . , ~en =


0
0
...
1

 .
This basis of Rn is called the standard basis of Rn.

Example. What is a basis of Pn?

Every polynomial p(t) in Pn has the form

p(t) = c01 + c1t+ c2t
2 + · · ·+ cnt

n.

We recognize in this a linear combination of the polynomials 1, t, . . . , tn.

This means that Pn is spanned by 1, t, . . . , tn.

Is the spanning set {1, t, . . . , tn} linearly independent?

We answer this by setting c01 + c1t + · · · + cnt
n = 0 (this equal holds for all t ∈ R) and

determining what the weights ci can be.

This says that each value of t is a root of the polynomial; it has infinitely many roots.

The Fundamental Theorem of Algebra states that a nonzero polynomial has at most n
real roots.

Could c01 + c1t+ · · · cntn be a nonzero polynomial with infinitely many roots?

NO, so the only way for c01 + c1t+ · · ·+ cnt
n = 0 to hold for all t ∈ R) is that all of the

weights are 0.

Hence {1, t, . . . , tn} is a linearly independent set, and so it is a basis of Pn. / / / /

What kind of algorithm is there for finding a basis of a vector space (or any of its
subspaces)?

Theorem 5 (The Spanning Set Theorem). Let S = {~v1, ~v2, . . . , ~vp} be a set in a vector
space V , and set H = span{~v1, ~v2, . . . , ~vp}.



a. If one of the vectors in S, say ~vk, is a linear combination of the other p− 1 vectors
in S, then the set obtained by removing ~vk from S still spans H.

b. If H 6= {~0}, then some subset of H is a basis for H.

Proof. (a) We may assume WLOG (by relabelling the vectors in S) that

~vp = α1~v1 + α2~v2 + · · ·+ αp−1~vp−1.

For an arbitrary ~x in H we then have that

~x = c1~v1 + c2~v2 + · · ·+ cp−1~vp−1 + cp~vp

= c1~v1 + c2~v2 + · · ·+ cp−1~vp−1 + cp
(
α1~v1 + α2~v2 + · · ·+ αp−1~vp−1

)
= (c1 + α1cp)~v1 + (c2 + α2cp)~v2 + · · ·+ (cp−1 + αp−1cp)~vp−1.

This says that the arbitrary ~x is in the span of the set obtained from S by removing ~vp.

(b) If the original spanning set S is linearly independent, then we have a basis for H.

So we may suppose that the spanning set S is not linearly independent.

Then one of the vectors in S, say WLOG the last one ~vp, is a linear combination of the
others.

Removing ~vp from S results in a new set, still call it S, that spans H by part (a).

If the new spanning set S is linearly independent we have a basis.

If not, then one the vectors, say WLOG ~vp−1, is a linear combination of the others, and
can be removed form S, still call it S, that spans H.

We continue removing vectors from S until we arrive a linear independent set that spans
H.

The process either ends with two linearly independent vectors in S that span H, or one
vector (which has to be nonzero because H 6= {~0}), and so is linearly independent. �

Bases for Null Spaces and Columns Spaces. Recall that we find a spanning
set for the null space of a matrix A by solving the homogeneous equation A~x = ~0 in
parametric vector form.

Also recall that the spanning set is linearly independent because of where the 0’s and the
1’s appear, and so we obtain a basis for Nul(A).

In finding a basis for the column space of A, we always have a spanning set, not necessarily
a basis, given by the columns of A.

If the columns of A are linearly dependent, then by the Spanning Set Theorem, we can
discard some columns and obtain a basis for Col(A).

How do we decide which columns of A to discard?

If you say by row reduction of A, you are correct.

Theorem 6. The pivot columns of A form a basis for Col(A).



Proof. Let U be the reduced row echelon form of A.

The set of pivot columns of U is linearly independent because a given pivot column
cannot be a linear combination of the pivot columns before it (think of where the 1’s
are).

The pivot columns of A are linearly independent as well because any linear dependence
relation among the columns of A (a solution ~x of A~x = ~0) is also a linear dependence
relations among the columns of U (the same ~x satisfies U~x = ~0 since U and A are row
equivalent).

For the same reason, the non-pivot columns of A are linear combinations of the pivot
columns of A.

By discarding the non-pivot columns of A, we obtain a basis for Col(A). �

Example. Find basis for the column spaces of

A =

1 1 1 4
2 2 1 7
2 2 2 8

 .
The reduced row echelon form for A is

U =

1 1 0 3
0 0 1 1
0 0 0 0

 .
Observe that the second column of U is 1 times the first column of U .

Is the second column of A the same scalar multiple of the first column of A? Yes it is.

The fourth column of U is 3 times the first column of U plus the third column of U .

Is the fourth column of A the same linear combination of the first and third columns of
A? Yes, it is!

So the second and fourth columns of A are unnecessary as part of a spanning set.

A basis for the column space of A is the set
1

2
2

 ,
1

1
2

 ,

the first and third columns of A (NOT U), the pivot columns of A.


