Math 313 Lecture #18§4.4: Coordinate Systems

Now that we know how to find a basis of a vector space or its subspaces, we will learn why a basis is important.

We are familiar with the (x, y)-coordinates of the plane: the x and y quantities represent horizontal and vertical displacements from a starting point (we call the origin).

A basis of a vector space is the mechanism by which we impose coordinates on a vector space.

The following result is the key to this mechanism.

Theorem 7 (The Unique Representation Theorem). Let $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n\}$ be a basis for a vector space V. Then for each \vec{x} in V there exists a unique set of weights c_1, c_2, \ldots, c_n such that

$$\vec{x} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n.$$

Proof. Let \vec{x} in V be arbitrary.

Since \mathcal{B} spans V, there exists a set of weights c_1, c_2, \ldots, c_n such that

$$\vec{x} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n.$$

To show the uniqueness of the set of weights, we suppose there is another set of weights d_1, d_2, \ldots, d_n such that

$$\vec{x} = d_1 \vec{b}_1 + d_2 \vec{b}_2 + \dots + d_n \vec{b}_n.$$

Subtracting the one linear combination for \vec{b} from the other gives

$$\vec{0} = (c_1 - d_1)\vec{b}_1 + (c_2 - d_2)\vec{b}_2 + \dots + (c_n - d_n)\vec{b}_n.$$

Linear independence of \mathcal{B} implies that the weights in this linear combination are all zero, so that $c_i = d_i$ for all i = 1, 2, ..., n.

Thus there is a unique set of weights c_1, c_2, \ldots, c_n the representation of \vec{x} in terms of the basis \mathcal{B} is unique.

Let us review a familiar example of basis and coordinates.

Example. For the standard basis $\{\vec{e}_1, \vec{e}_2, \ldots, \vec{e}_n\}$ of \mathbb{R}^n , the unique representation of \vec{x} in \mathbb{R}^n is

$$\vec{x} = x_1 \vec{e_1} + x_2 \vec{e_2} + \dots + x_n \vec{e_n}$$

where the unique weights x_1, x_2, \ldots, x_n are the standard coordinates of \vec{x} .

We can extract idea of standard coordinates and apply it to any basis of any vector space.

Definition. Suppose $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ is a basis for a vector space V. The **coordinates of** \vec{x} relative to the basis \mathcal{B} (or the \mathcal{B} -coordinates of \vec{x}) are the unique weights c_1, c_2, \dots, c_n for which

$$\vec{x} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n.$$

Notationally we write and say that

$$[\vec{x}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix}$$

is the coordinate vector of \vec{x} (relative to \mathcal{B}), or the \mathcal{B} -coordinate vector of \vec{x} . Example. The set

$$\mathcal{B} = \{\vec{b}_1, \vec{b}_2\} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}$$

form a basis for \mathbb{R}^2 because the matrix $A = [\vec{b}_1, \vec{b}_2]$ is invertible (which by the Inverse Matrix Theorem says that the columns span and are linearly independent).

What are the \mathcal{B} -coordinates of $\vec{e_1}$? We are asked to solve the vector equation

$$c_1 \vec{b}_1 + c_2 \vec{b}_2 = \vec{e}_1$$

or in other notation, the matrix equation $A\vec{c} = \vec{e}_1$.

This we do by row reduction of the augmented matrix to obtain $c_1 = 1/2$ and $c_2 = 1/2$, so that

$$[\vec{e}_1]_{\mathcal{B}} = \begin{bmatrix} 1/2\\1/2 \end{bmatrix}.$$

The basis \mathcal{B} gives a different "view" of the plane, in which \vec{b}_1 and \vec{b}_2 correspond to the dials a different kind of Etch-A-Sketch (one dial moves northeast-southwest, the other dial moves southeast-northwest).

There is an important aspect of coordinates that is implicit in the above example that we extract.

In finding the coordinates of \vec{x} in \mathbb{R}^n relative to a basis $\mathcal{B} = {\vec{b}_1, \vec{b}_2, \ldots, \vec{b}_n}$, we solved the equation

$$c_1\vec{b}_1 + c_2\vec{b}_2 + \dots + c_n\vec{b}_n = \vec{x}.$$

If we set $P_{\mathcal{B}}$ to be the matrix $\begin{bmatrix} \vec{b_1} & \vec{b_2} & \cdots & \vec{b_n} \end{bmatrix}$, then the above vector equation in matrix notation is

$$\vec{x} = P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}}.$$

We call the matrix $P_{\mathcal{B}}$ the **change-of-coordinates** matrix form the basis \mathcal{B} to the standard basis of \mathbb{R}^n .

The matrix $P_{\mathcal{B}}$ is invertible (why?) and gives the change of coordinates from the standard basis to the basis \mathcal{B} .

The Coordinate Mapping. The choice of a basis \mathcal{B} for a vector space V gives a transformation $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ from the possible unfamiliar vector space V (the domain) to the familiar vector space \mathbb{R}^n (the codomain).

What are the properties of this transformation? Is it linear? Is it one-to-one? Is it onto? Theorem 8. For a basis $\mathcal{B} = \{\vec{b}_1, \vec{b}_2, \dots, \vec{b}_n\}$ of a vector space V, the coordinate mapping $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^n .

Proof. To show that the coordinate mapping is linear, suppose there are two vectors in V, say

$$\vec{u} = c_1 \vec{b}_1 + c_2 \vec{b}_2 + \dots + c_n \vec{b}_n, \vec{v} = d_1 \vec{b}_1 + d_2 \vec{b}_2 + \dots + d_n \vec{b}_n$$

Then

$$\vec{u} + \vec{v} = (c_1 + d_1)\vec{b}_1 + (c_2 + d_2)\vec{b}_2 + \dots + (c_n + d_n)\vec{b}_n.$$

It follows that

$$[\vec{u} + \vec{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 + d_1 \\ c_2 + d_2 \\ \vdots \\ c_n + d_n \end{bmatrix} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} + \begin{bmatrix} d_1 \\ d_2 \\ \vdots \\ d_n \end{bmatrix} = [\vec{u}]_{\mathcal{B}} + [\vec{v}]_{\mathcal{B}}.$$

For a scalar α we have $\alpha \vec{u} = \alpha c_1 \vec{b}_1 + \alpha c_2 \vec{b}_2 + \dots + \alpha c_n \vec{b}_n$, and so

$$[\alpha \vec{u}]_{\mathcal{B}} = \begin{bmatrix} \alpha c_1 \\ \alpha c_2 \\ \vdots \\ \alpha c_n \end{bmatrix} = \alpha \begin{bmatrix} c_1 \\ c_2 \\ \vdots \\ c_n \end{bmatrix} = \alpha [\vec{u}]_{\mathcal{B}}.$$

Thus we have shown that the coordinate mapping is linear.

The proofs of the one-to-one and the onto are homework problems (#23,24). \Box

The one-to-one linear coordinate mapping $\vec{x} \mapsto [\vec{x}]_{\mathcal{B}}$ from a vector space V with basis \mathcal{B} onto \mathbb{R}^n is an example of a important type of transformation called an *isomorphism*.

It means that the possibly less familiar vector space V is just a "copy" of the more familiar \mathbb{R}^n : every vector space calculation in V (i.e., linear combinations) is accurately reproduced in \mathbb{R}^n .

Example. We have seen that the set of polynomials $\mathcal{B} = \{1, t, \dots, t^n\}$ is a basis for the less familiar vector space \mathbb{P}_n .

The coordinate mapping $p(t) \mapsto [p(t)]_{\mathcal{B}}$ is the isomorphism

$$c_0 1 + c_1 t + \dots + c_n t^n \mapsto \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_n \end{bmatrix}$$

The image of the basis vector 1 is the vector \vec{e}_1 , the image of the basis vector t is e_2 , which continues, ending with the image of the basis vector t^n is e_{n+1} .

So \mathbb{P}_n is nothing more than the vector space \mathbb{R}^{n+1} in disguish!