Math 313 Lecture \#18
 §4.4: Coordinate Systems

Now that we know how to find a basis of a vector space or its subspaces, we will learn why a basis is important.

We are familiar with the (x, y)-coordinates of the plane: the x and y quantities represent horizontal and vertical displacements from a starting point (we call the origin).

A basis of a vector space is the mechanism by which we impose coordinates on a vector space.

The following result is the key to this mechanism.
Theorem 7 (The Unique Representation Theorem). Let $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$ be a basis for a vector space V. Then for each \vec{x} in V there exists a unique set of weights $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n} .
$$

Proof. Let \vec{x} in V be arbitrary.
Since \mathcal{B} spans V, there exists a set of weights $c_{1}, c_{2}, \ldots, c_{n}$ such that

$$
\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n} .
$$

To show the uniqueness of the set of weights, we suppose there is another set of weights $d_{1}, d_{2}, \ldots, d_{n}$ such that

$$
\vec{x}=d_{1} \vec{b}_{1}+d_{2} \vec{b}_{2}+\cdots+d_{n} \vec{b}_{n} .
$$

Subtracting the one linear combination for \vec{b} from the other gives

$$
\overrightarrow{0}=\left(c_{1}-d_{1}\right) \vec{b}_{1}+\left(c_{2}-d_{2}\right) \vec{b}_{2}+\cdots+\left(c_{n}-d_{n}\right) \vec{b}_{n} .
$$

Linear independence of \mathcal{B} implies that the weights in this linear combination are all zero, so that $c_{i}=d_{i}$ for all $i=1,2, \ldots, n$.

Thus there is a unique set of weights $c_{1}, c_{2}, \ldots, c_{n}$ the representation of \vec{x} in terms of the basis \mathcal{B} is unique.

Let us review a familiar example of basis and coordinates.
Example. For the standard basis $\left\{\vec{e}_{1}, \vec{e}_{2}, \ldots, \vec{e}_{n}\right\}$ of \mathbb{R}^{n}, the unique representation of \vec{x} in \mathbb{R}^{n} is

$$
\vec{x}=x_{1} \vec{e}_{1}+x_{2} \vec{e}_{2}+\cdots+x_{n} \vec{e}_{n}
$$

where the unique weights $x_{1}, x_{2}, \ldots, x_{n}$ are the standard coordinates of \vec{x}.
We can extract idea of standard coordinates and apply it to any basis of any vector space.
Definition. Suppose $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$ is a basis for a vector space V. The coordinates of \vec{x} relative to the basis \mathcal{B} (or the \mathcal{B}-coordinates of \vec{x}) are the unique weights $c_{1}, c_{2}, \ldots, c_{n}$ for which

$$
\vec{x}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n} .
$$

Notationally we write and say that

$$
\left[\overrightarrow{x_{\mathcal{B}}}=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]\right.
$$

is the coordinate vector of \vec{x} (relative to \mathcal{B}), or the \mathcal{B}-coordinate vector of \vec{x}. Example. The set

$$
\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}\right\}=\left\{\left[\begin{array}{l}
1 \\
1
\end{array}\right],\left[\begin{array}{c}
1 \\
-1
\end{array}\right]\right\}
$$

form a basis for \mathbb{R}^{2} because the matrix $A=\left[\vec{b}_{1}, \vec{b}_{2}\right]$ is invertible (which by the Inverse Matrix Theorem says that the columns span and are linearly independent).
What are the \mathcal{B}-coordinates of \vec{e}_{1} ? We are asked to solve the vector equation

$$
c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}=\vec{e}_{1}
$$

or in other notation, the matrix equation $A \vec{c}=\vec{e}_{1}$.
This we do by row reduction of the augmented matrix to obtain $c_{1}=1 / 2$ and $c_{2}=1 / 2$, so that

$$
\left[\vec{e}_{1}\right]_{\mathcal{B}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2
\end{array}\right] .
$$

The basis \mathcal{B} gives a different "view" of the plane, in which \vec{b}_{1} and \vec{b}_{2} correspond to the dials a different kind of Etch-A-Sketch (one dial moves northeast-southwest, the other dial moves southeast-northwest).

There is an important aspect of coordinates that is implicit in the above example that we extract.
In finding the coordinates of \vec{x} in \mathbb{R}^{n} relative to a basis $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$, we solved the equation

$$
c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n}=\vec{x}
$$

If we set $P_{\mathcal{B}}$ to be the matrix $\left[\begin{array}{llll}\vec{b}_{1} & \vec{b}_{2} & \cdots & \vec{b}_{n}\end{array}\right]$, then the above vector equation in matrix notation is

$$
\vec{x}=P_{\mathcal{B}}[\vec{x}]_{\mathcal{B}} .
$$

We call the matrix $P_{\mathcal{B}}$ the change-of-coordinates matrix form the basis \mathcal{B} to the standard basis of \mathbb{R}^{n}.

The matrix $P_{\mathcal{B}}$ is invertible (why?) and gives the change of coordinates from the standard basis to the basis \mathcal{B}.

The Coordinate Mapping. The choice of a basis \mathcal{B} for a vector space V gives a transformation $\vec{x} \mapsto[\vec{x}]_{\mathcal{B}}$ from the possible unfamiliar vector space V (the domain) to the familiar vector space \mathbb{R}^{n} (the codomain).

What are the properties of this transformation? Is it linear? Is it one-to-one? Is it onto? Theorem 8. For a basis $\mathcal{B}=\left\{\vec{b}_{1}, \vec{b}_{2}, \ldots, \vec{b}_{n}\right\}$ of a vector space V, the coordinate mapping $\vec{x} \mapsto[\vec{x}]_{\mathcal{B}}$ is a one-to-one linear transformation from V onto \mathbb{R}^{n}.
Proof. To show that the coordinate mapping is linear, suppose there are two vectors in V, say

$$
\begin{aligned}
& \vec{u}=c_{1} \vec{b}_{1}+c_{2} \vec{b}_{2}+\cdots+c_{n} \vec{b}_{n}, \\
& \vec{v}=d_{1} \vec{b}_{1}+d_{2} \vec{b}_{2}+\cdots+d_{n} \vec{b}_{n} .
\end{aligned}
$$

Then

$$
\vec{u}+\vec{v}=\left(c_{1}+d_{1}\right) \vec{b}_{1}+\left(c_{2}+d_{2}\right) \vec{b}_{2}+\cdots+\left(c_{n}+d_{n}\right) \vec{b}_{n} .
$$

It follows that

$$
[\vec{u}+\vec{v}]_{\mathcal{B}}=\left[\begin{array}{c}
c_{1}+d_{1} \\
c_{2}+d_{2} \\
\vdots \\
c_{n}+d_{n}
\end{array}\right]=\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]+\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right]=[\vec{u}]_{\mathcal{B}}+[\vec{v}]_{\mathcal{B}}
$$

For a scalar α we have $\alpha \vec{u}=\alpha c_{1} \vec{b}_{1}+\alpha c_{2} \vec{b}_{2}+\cdots+\alpha c_{n} \vec{b}_{n}$, and so

$$
[\alpha \vec{u}]_{\mathcal{B}}=\left[\begin{array}{c}
\alpha c_{1} \\
\alpha c_{2} \\
\vdots \\
\alpha c_{n}
\end{array}\right]=\alpha\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\alpha[\vec{u}]_{\mathcal{B}} .
$$

Thus we have shown that the coordinate mapping is linear.
The proofs of the one-to-one and the onto are homework problems (\#23,24).
The one-to-one linear coordinate mapping $\vec{x} \mapsto[\vec{x}]_{\mathcal{B}}$ from a vector space V with basis \mathcal{B} onto \mathbb{R}^{n} is an example of a important type of transformation called an isomorphism.

It means that the possibly less familiar vector space V is just a "copy" of the more familiar \mathbb{R}^{n} : every vector space calculation in V (i.e., linear combinations) is accurately reproduced in \mathbb{R}^{n}.
Example. We have seen that the set of polynomials $\mathcal{B}=\left\{1, t, \ldots, t^{n}\right\}$ is a basis for the less familiar vector space \mathbb{P}_{n}.

The coordinate mapping $p(t) \mapsto[p(t)]_{\mathcal{B}}$ is the isomorphism

$$
c_{0} 1+c_{1} t+\cdots+c_{n} t^{n} \mapsto\left[\begin{array}{c}
c_{0} \\
c_{1} \\
\vdots \\
c_{n}
\end{array}\right] .
$$

The image of the basis vector 1 is the vector \vec{e}_{1}, the image of the basis vector t is e_{2}, which continues, ending with the image of the basis vector t^{n} is e_{n+1}.
So \mathbb{P}_{n} is nothing more than the vector space \mathbb{R}^{n+1} in disguish!

