Math 313 Lecture \#21
 §5.1: Eigenvectors and Eigenvalues

We have learned many things about solving the matrix equation $A \vec{x}=\vec{b}$.
Now we turn our attention to solving another problem in linear algebra, namely the equation

$$
A \vec{x}=\lambda \vec{x}
$$

for an $n \times n$ matrix A and a scalar λ.
Example. For the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

and the scalar $\lambda=3$, the vector

$$
\vec{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right]
$$

satisfies $A \vec{x}=\lambda \vec{x}$ because

$$
A \vec{x}=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \text { and } \lambda \vec{x}=3\left[\begin{array}{l}
1 \\
2
\end{array}\right]=\left[\begin{array}{l}
3 \\
6
\end{array}\right] \text {. }
$$

Are there other choices of \vec{x} and λ that work too?
Certainly the choice of $\vec{x}=\overrightarrow{0}$ works for any scalar λ, but this does not depend on what A is, so we will exclude this trivial case.
Definitions. An eigenvector of an $n \times n$ matrix A is a NONZERO vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$ for some scalar λ.
An eigenvalue of an $n \times n$ matrix A is a scalar (could be zero) such that there is a NONZERO vector \vec{x} such that $A \vec{x}=\lambda \vec{x}$; such a vector is called an eigenvector corresponding to λ.
What is the significance of the eigenvectors and eigenvalues of A ?
Example (Continued). We know that $\lambda=3$ is an eigenvalue of the matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

and a corresponding eigenvector is

$$
\vec{x}=\left[\begin{array}{l}
1 \\
2
\end{array}\right] .
$$

The eigenvector satisfies the equation $A \vec{x}=3 \vec{x}$, or rewritten,

$$
A \vec{x}-3 \vec{x}=\overrightarrow{0} .
$$

We would like to factor out the common \vec{x}, but we might mistakenly write

$$
(A-3) \vec{x}=\overrightarrow{0} .
$$

What is incorrect with this equation? There is no way to subtract the scalar 3 from the 2×2 matrix A.

Instead, we write $3 \vec{x}=3 I \vec{x}$ for the 2×2 identity matrix I, so that

$$
(A-3 I) \vec{x}=\overrightarrow{0}
$$

This homogeneous equation has a nontrivial solution in \vec{x}.
By the Inverse Matrix Theorem the matrix $A-3 I$ is not invertible, which we verify directly: the determinant of

$$
A-3 I=\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right]
$$

is 0 , and so $A-3 I$ is not invertible.
The nonzero vector \vec{x} belongs to the null space of $A-3 I$; in particular, \vec{x} is a basis for $\operatorname{Nul}(A-3 I)$ because

$$
A-3 I \sim\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]
$$

so that u_{1} is a basic variable, $u_{2}=t$ is a free variable, and the solution set of $(A-3 I) \vec{u}=\overrightarrow{0}$ consists of the vectors

$$
\vec{u}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right]=t\left[\begin{array}{l}
1 \\
2
\end{array}\right]=t \vec{x}
$$

Are there other values of λ for which $A-\lambda I$ is not invertible? Yes, $\lambda=-1$.
An eigenvector of A corresponding to $\lambda=-1$ is a nontrivial solution of $(A+I) \vec{u}=\overrightarrow{0}$, namely

$$
\vec{x}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

It so happens that this \vec{x} is a basis for $\operatorname{Nul}(A+I)$.
We see in this example that eigenvectors of A are basis vectors of null spaces of matrices of the form $A-\lambda I$.
Thus λ is an eigenvalue of A if and only if the homogeneous equation $(A-\lambda I) \vec{x}=\overrightarrow{0}$ has a nontrivial solution.

For an eigenvalue λ of A we call the null space of $A-\lambda I$ the eigenspace of A corresponding to λ.
For a real eigenvalue λ of a matrix A, the matrix transformation $\vec{x} \mapsto A \vec{x}=\lambda \vec{x}$ acts like dilation/contraction on the eigenspace $\operatorname{Nul}(A-\lambda I)$.
At this point, we only have the method of guess and check to find eigenvalues of a square matrix.

But for a certain type of square matrix, the eigenvalues are readily found.
Theorem 1. The eigenvalues of a triangular square matrix are its diagonal entries.

WARNING: this does not say that we can find eigenvalues by row reduction. A counterexample to this is the invertible matrix

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

whose eigenvalues are 3 and -1 , but the eigenvalues of the I (the reduced row echelon form of A) are 1 and 1 .
Proof. Suppose A is in triangular form with diagonal entries $a_{i i}$ for $i=1,2, \ldots, n$.
For a fixed i set $\lambda=a_{i i}$.
One of the diagonal entries of $A-\lambda I$ is zero (namely the (i, i) entry), and so $\operatorname{det}(A-\lambda I)=$ 0.

By the Inverse Matrix Theorem, there is a nontrivial solution \vec{x} of $(A-\lambda I) \vec{x}=\overrightarrow{0}$.
This means that $A \vec{x}=\lambda \vec{x}$, and so λ is an eigenvalue.
The eigenvectors of a square matrix associated to distinct eigenvalues enjoy a valuable property.

Theorem 2. If $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}$ are eigenvectors corresponding to distinct eigenvalues of a square matrix, then the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{r}\right\}$ is linearly independent.
Proof. We prove this by way of contradiction, by supposing that the set of eigenvectors is linearly dependent.
Since $\vec{v}_{1} \neq \overrightarrow{0}$, we can apply the linear dependent Theorem: there is a least index p such that the eigenvector v_{p+1} is a linear combination of the preceding p eigenvectors.
The choice of the least index p means that the set of eigenvectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{p}\right\}$ is linearly independent (for otherwise there would be a smaller choice of p).
There are weights $c_{1}, c_{2}, \ldots, c_{p}$ such that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\vec{v}_{p+1}
$$

To this we apply the matrix transformation $\vec{x} \mapsto A \vec{x}$ to obtain

$$
c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}+\cdots+c_{p} A \vec{v}_{p}=A \vec{v}_{p+1} .
$$

Since $A \vec{v}_{i}=\lambda_{i} \vec{v}_{i}$ for each $i=1,2, \ldots, p+1$, we obtain

$$
c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}+\cdots+c_{p} \lambda_{p} \vec{v}_{p}=\lambda_{p+1} \vec{v}_{p+1} .
$$

Multiplying the equation $c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\vec{v}_{p+1}$ through by λ_{p+1} gives

$$
c_{1} \lambda_{p+1} \vec{v}_{1}+c_{2} \lambda_{p+1} \vec{v}_{2}+\cdots+c_{p} \lambda_{p+1} \vec{v}_{p}=\lambda_{p+1} \vec{v}_{p+1} .
$$

Subtracting this equation from $c_{1} \lambda_{1} \vec{v}_{1}+c_{2} \lambda_{2} \vec{v}_{2}+\cdots+c_{p} \lambda_{p} \vec{v}_{p}=\lambda_{p+1} \vec{v}_{p+1}$ gives

$$
c_{1}\left(\lambda_{1}-\lambda_{p+1}\right) \vec{v}_{1}+c_{2}\left(\lambda_{2}-\lambda_{p+1}\right) \vec{v}_{2}+\cdots+c_{p}\left(\lambda_{p}-\lambda_{p+1}\right) \vec{v}_{p}=\overrightarrow{0}
$$

The linear independence of the set $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{p}\right\}$ now implies that $c_{i}\left(\lambda_{i}-\lambda_{p+1}\right)=0$ for each $i=1,2, \ldots, p$.
Thus $c_{i}=0$ for each $i=1,2, \ldots, p$ since the eigenvalues are distinct.
This implies that $v_{p+1}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{p} \vec{v}_{p}=\overrightarrow{0}$.
[What is the contradiction here?]
But \vec{v}_{p+1} is an eigenvector, meaning it is nonzero, a contradiction.

