
Math 313 Lecture #21
§5.1: Eigenvectors and Eigenvalues

We have learned many things about solving the matrix equation A~x = ~b.

Now we turn our attention to solving another problem in linear algebra, namely the
equation

A~x = λ~x

for an n× n matrix A and a scalar λ.

Example. For the matrix

A =

[
1 1
4 1

]
and the scalar λ = 3, the vector

~x =

[
1
2

]
satisfies A~x = λ~x because

A~x =

[
1 1
4 1

] [
1
2

]
=

[
3
6

]
and λ~x = 3

[
1
2

]
=

[
3
6

]
.

Are there other choices of ~x and λ that work too?

Certainly the choice of ~x = ~0 works for any scalar λ, but this does not depend on what
A is, so we will exclude this trivial case.

Definitions. An eigenvector of an n × n matrix A is a NONZERO vector ~x such
that A~x = λ~x for some scalar λ.

An eigenvalue of an n × n matrix A is a scalar (could be zero) such that there is
a NONZERO vector ~x such that A~x = λ~x; such a vector is called an eigenvector
corresponding to λ.

What is the significance of the eigenvectors and eigenvalues of A?

Example (Continued). We know that λ = 3 is an eigenvalue of the matrix

A =

[
1 1
4 1

]
,

and a corresponding eigenvector is

~x =

[
1
2

]
.

The eigenvector satisfies the equation A~x = 3~x, or rewritten,

A~x− 3~x = ~0.

We would like to factor out the common ~x, but we might mistakenly write

(A− 3)~x = ~0.



What is incorrect with this equation? There is no way to subtract the scalar 3 from the
2× 2 matrix A.

Instead, we write 3~x = 3I~x for the 2× 2 identity matrix I, so that

(A− 3I)~x = ~0.

This homogeneous equation has a nontrivial solution in ~x.

By the Inverse Matrix Theorem the matrix A − 3I is not invertible, which we verify
directly: the determinant of

A− 3I =

[
−2 1
4 −2

]
is 0, and so A− 3I is not invertible.

The nonzero vector ~x belongs to the null space of A − 3I; in particular, ~x is a basis for
Nul(A− 3I) because

A− 3I ∼
[
2 1
0 0

]
so that u1 is a basic variable, u2 = t is a free variable, and the solution set of (A−3I)~u = ~0
consists of the vectors

~u =

[
u1
u2

]
= t

[
1
2

]
= t~x.

Are there other values of λ for which A− λI is not invertible? Yes, λ = −1.

An eigenvector of A corresponding to λ = −1 is a nontrivial solution of (A + I)~u = ~0,
namely

~x =

[
1
−2

]
.

It so happens that this ~x is a basis for Nul(A+ I). / / / /

We see in this example that eigenvectors of A are basis vectors of null spaces of matrices
of the form A− λI.

Thus λ is an eigenvalue of A if and only if the homogeneous equation (A− λI)~x = ~0 has
a nontrivial solution.

For an eigenvalue λ of A we call the null space of A − λI the eigenspace of A corre-
sponding to λ.

For a real eigenvalue λ of a matrix A, the matrix transformation ~x 7→ A~x = λ~x acts like
dilation/contraction on the eigenspace Nul(A− λI).

At this point, we only have the method of guess and check to find eigenvalues of a square
matrix.

But for a certain type of square matrix, the eigenvalues are readily found.

Theorem 1. The eigenvalues of a triangular square matrix are its diagonal entries.



WARNING: this does not say that we can find eigenvalues by row reduction. A coun-
terexample to this is the invertible matrix

A =

[
1 1
4 1

]
whose eigenvalues are 3 and −1, but the eigenvalues of the I (the reduced row echelon
form of A) are 1 and 1.

Proof. Suppose A is in triangular form with diagonal entries aii for i = 1, 2, . . . , n.

For a fixed i set λ = aii.

One of the diagonal entries of A−λI is zero (namely the (i, i) entry), and so det(A−λI) =
0.

By the Inverse Matrix Theorem, there is a nontrivial solution ~x of (A− λI)~x = ~0.

This means that A~x = λ~x, and so λ is an eigenvalue. �

The eigenvectors of a square matrix associated to distinct eigenvalues enjoy a valuable
property.

Theorem 2. If ~v1, ~v2, . . . , ~vr are eigenvectors corresponding to distinct eigenvalues of a
square matrix, then the set {~v1, ~v2, . . . , ~vr} is linearly independent.

Proof. We prove this by way of contradiction, by supposing that the set of eigenvectors
is linearly dependent.

Since ~v1 6= ~0, we can apply the linear dependent Theorem: there is a least index p such
that the eigenvector vp+1 is a linear combination of the preceding p eigenvectors.

The choice of the least index p means that the set of eigenvectors {~v1, . . . , ~vp} is linearly
independent (for otherwise there would be a smaller choice of p).

There are weights c1, c2, . . . , cp such that

c1~v1 + c2~v2 + · · ·+ cp~vp = ~vp+1.

To this we apply the matrix transformation ~x 7→ A~x to obtain

c1A~v1 + c2A~v2 + · · ·+ cpA~vp = A~vp+1.

Since A~vi = λi~vi for each i = 1, 2, . . . , p+ 1, we obtain

c1λ1~v1 + c2λ2~v2 + · · ·+ cpλp~vp = λp+1~vp+1.

Multiplying the equation c1~v1 + c2~v2 + · · ·+ cp~vp = ~vp+1 through by λp+1 gives

c1λp+1~v1 + c2λp+1~v2 + · · ·+ cpλp+1~vp = λp+1~vp+1.

Subtracting this equation from c1λ1~v1 + c2λ2~v2 + · · ·+ cpλp~vp = λp+1~vp+1 gives

c1(λ1 − λp+1)~v1 + c2(λ2 − λp+1)~v2 + · · ·+ cp(λp − λp+1)~vp = ~0.



The linear independence of the set {~v1, ~v2, . . . , ~vp} now implies that ci(λi− λp+1) = 0 for
each i = 1, 2, . . . , p.

Thus ci = 0 for each i = 1, 2, . . . , p since the eigenvalues are distinct.

This implies that vp+1 = c1~v1 + c2~v2 + · · ·+ cp~vp = ~0.

[What is the contradiction here?]

But ~vp+1 is an eigenvector, meaning it is nonzero, a contradiction. �


