
Math 313 Lecture #22
§5.2: The Characteristic Equation

The only method we have so far for finding the eigenvalue of a square matrix is guess
and check.

We will develop a sure shot method today, which we introduce by way of example.

Example. Last time we learned that the eigenvalues of

A =

[
1 1
4 1

]
are λ = 3 and λ = −1.

For either value of λ, we know that the matrix A−λI is not invertible (so that the homo-
geneous equation (A−λI)~x = ~0 has a nontrivial solution – an eigenvector corresponding
to λ).

By the Inverse Matrix Theorem, the noninvertibility of A− λI is the same as

det(A− λI) = 0.

Computing the determinant of

A− λI =

[
1− λ 1

4 1− λ

]
by the formula for a 2× 2 matrix gives a quadratic polynomial in λ,

det(A− λI) = (1− λ)2 − 4 = λ2 − 2λ− 3.

This polynomial factors as (λ − 3)(λ + 1), so that the eigenvalues of A are the roots of
the quadratic polynomial, namely λ = 3 and λ = −1.

How can we check our eigenvalues? We compute the determinant of A − λI for each
value of λ: the determinants of

A− 3I =

[
−2 1
4 −2

]
and A+ I =

[
2 1
4 2

]
are both zero.

We can then proceed to find eigenvectors by finding a basis for each eigenspace. / / / /

The Characterization Equation. From the motivating example, we can now develop
the sure shot method for finding the eigenvalues of a square matrix.

The polynomial equation det(A− λI) = 0 is called the characteristic equation of A,
while the polynomial det(A− λI) is called the characteristic polynomial of A.

A scalar λ is an eigenvalue of A if and only if λ satisfies the characteristic equation
det(A− λI) = 0.



Finding eigenvalues of A it simply a matter of finding the roots of the characteristic
polynomial of A.

Example. Find the eigenvalues of

A =

2 0 −2
1 1 −2
1 0 −1

 .
We form the matrix

A− λI =

2− λ 0 −2
1 1− λ −2
1 0 −1− λ

 ,
and compute its determinant by cofactor expansion, in this case, down the second column
(by cofactor expansion only, because row reduction gets messy with the λ’s in the matrix):

det(A− λI) = (1− λ)

∣∣∣∣2− λ −2
1 −1− λ

∣∣∣∣
= (1− λ)

[
(2− λ)(−1− λ) + 2

]
= (1− λ)

[
− 2− 2λ+ λ+ λ2 + 2

]
= (1− λ)

[
λ2 − λ

]
= (1− λ)λ(λ− 1)

= −λ(λ− 1)2.

The eigenvalues of A are the roots of the cubic −λ(λ− 1)2, namely λ = 0 and λ = 1.

What does the 0 eigenvalue of A say about A? That A = A− 0I is noninvertible.

The converse holds too: If A is noninvertible, then A− 0I is noninvertible.

This adds yet another statement to the Inverse Matrix Theorem (it is statement s.).

What do we make of the factor (λ − 1)2 of the characteristic polynomial? That the
eigenvalue λ = 1 occurs twice.

We say that the algebraic multiplicity of the eigenvalue λ = 1 is two, while the
algebraic multiplicity of the eigenvalue λ = 0 is one (because the factor λ occurs only
once in the characteristic polynomial).

Similarity. What can we say about two matrices that have the same eigenvalues?

Example. The matrices

A =

[
1 1
4 1

]
, B =

[
0 3
1 2

]
have the same characteristic polynomial λ2 − 2λ− 3, and so have the same eigenvalues.

How might A and B be related?

The invertible matrix

P =

[
0 1
1 1

]



satisfies the equation B = P−1AP which we can verify by computing PB and AP :

PB =

[
0 1
1 1

] [
0 3
1 2

]
=

[
1 2
1 5

]
,

AP =

[
1 1
4 1

] [
0 1
1 1

]
=

[
1 2
1 5

]
.

Example. The matrices

A =

[
3 0
0 3

]
, B =

[
3 1
0 3

]
also have the same characteristic polynomial (3− λ)2, and so have the same eigenvalues.

But there is no invertible matrix P such that B = P−1AP .

Why? Because for

P =

[
a b
c d

]
we have that

PB =

[
a b
c d

] [
3 1
0 3

]
=

[
3a a+ 3b
3c c+ 3d

]
,

AP =

[
3 0
0 3

] [
a b
c d

]
=

[
3a 3b
3c 3d

]
,

which forces a = 0 and c = 0, and hence P is not invertible.

Definitions. For two n × n matrices A and B, we say that A is similar to B if there
exists an invertible n× n matrix P such that B = P−1AP .

Writing Q = P−1 we have A = Q−1BQ, and so B is similar to A.

We can thus simple say that A and B are similar.

For a fixed invertible matrix P , the mapping taking A in Mn×n to P−1AP in Mn×n is
called a similarity transformation.

Theorem 4. If two n × n matrices A and B are similar, then they have the same
characteristic polynomial (and hence the same eigenvalues with the same algebraic mul-
tiplicities).

Proof. Suppose A and B are similar.

Then there exists an invertible matrix P such that B = P−1AP .

The
B − λI = P−1AP − λI = P−1AP − λP−1IP = P−1

(
A− λI

)
P.

Computing the characteristic polynomial of B we have

det(B − λI) = det
(
P−1(A− λI)P

)
= det(P−1)det(A− λI)det(P ).

Since det(P−1)det(P ) = det(P−1P ) = det(I) = 1, we arrive at det(B−λI) = det(A−λI).

Therefore A and B have the same characteristic polynomial. �


