Math 313 Lecture \#22
 §5.2: The Characteristic Equation

The only method we have so far for finding the eigenvalue of a square matrix is guess and check.

We will develop a sure shot method today, which we introduce by way of example.
Example. Last time we learned that the eigenvalues of

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]
$$

are $\lambda=3$ and $\lambda=-1$.
For either value of λ, we know that the matrix $A-\lambda I$ is not invertible (so that the homogeneous equation $(A-\lambda I) \vec{x}=\overrightarrow{0}$ has a nontrivial solution - an eigenvector corresponding to λ).

By the Inverse Matrix Theorem, the noninvertibility of $A-\lambda I$ is the same as

$$
\operatorname{det}(A-\lambda I)=0
$$

Computing the determinant of

$$
A-\lambda I=\left[\begin{array}{cc}
1-\lambda & 1 \\
4 & 1-\lambda
\end{array}\right]
$$

by the formula for a 2×2 matrix gives a quadratic polynomial in λ,

$$
\operatorname{det}(A-\lambda I)=(1-\lambda)^{2}-4=\lambda^{2}-2 \lambda-3
$$

This polynomial factors as $(\lambda-3)(\lambda+1)$, so that the eigenvalues of A are the roots of the quadratic polynomial, namely $\lambda=3$ and $\lambda=-1$.
How can we check our eigenvalues? We compute the determinant of $A-\lambda I$ for each value of λ : the determinants of

$$
A-3 I=\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right] \text { and } A+I=\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]
$$

are both zero.
We can then proceed to find eigenvectors by finding a basis for each eigenspace. / / / /
The Characterization Equation. From the motivating example, we can now develop the sure shot method for finding the eigenvalues of a square matrix.

The polynomial equation $\operatorname{det}(A-\lambda I)=0$ is called the characteristic equation of A, while the polynomial $\operatorname{det}(A-\lambda I)$ is called the characteristic polynomial of A.
A scalar λ is an eigenvalue of A if and only if λ satisfies the characteristic equation $\operatorname{det}(A-\lambda I)=0$.

Finding eigenvalues of A it simply a matter of finding the roots of the characteristic polynomial of A.
Example. Find the eigenvalues of

$$
A=\left[\begin{array}{lll}
2 & 0 & -2 \\
1 & 1 & -2 \\
1 & 0 & -1
\end{array}\right]
$$

We form the matrix

$$
A-\lambda I=\left[\begin{array}{ccc}
2-\lambda & 0 & -2 \\
1 & 1-\lambda & -2 \\
1 & 0 & -1-\lambda
\end{array}\right]
$$

and compute its determinant by cofactor expansion, in this case, down the second column (by cofactor expansion only, because row reduction gets messy with the λ 's in the matrix):

$$
\begin{aligned}
\operatorname{det}(A-\lambda I) & =(1-\lambda)\left|\begin{array}{cc}
2-\lambda & -2 \\
1 & -1-\lambda
\end{array}\right| \\
& =(1-\lambda)[(2-\lambda)(-1-\lambda)+2] \\
& =(1-\lambda)\left[-2-2 \lambda+\lambda+\lambda^{2}+2\right] \\
& =(1-\lambda)\left[\lambda^{2}-\lambda\right] \\
& =(1-\lambda) \lambda(\lambda-1) \\
& =-\lambda(\lambda-1)^{2} .
\end{aligned}
$$

The eigenvalues of A are the roots of the cubic $-\lambda(\lambda-1)^{2}$, namely $\lambda=0$ and $\lambda=1$.
What does the 0 eigenvalue of A say about A ? That $A=A-0 I$ is noninvertible.
The converse holds too: If A is noninvertible, then $A-0 I$ is noninvertible.
This adds yet another statement to the Inverse Matrix Theorem (it is statement s.).
What do we make of the factor $(\lambda-1)^{2}$ of the characteristic polynomial? That the eigenvalue $\lambda=1$ occurs twice.
We say that the algebraic multiplicity of the eigenvalue $\lambda=1$ is two, while the algebraic multiplicity of the eigenvalue $\lambda=0$ is one (because the factor λ occurs only once in the characteristic polynomial).
Similarity. What can we say about two matrices that have the same eigenvalues?
Example. The matrices

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right], B=\left[\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right]
$$

have the same characteristic polynomial $\lambda^{2}-2 \lambda-3$, and so have the same eigenvalues. How might A and B be related?

The invertible matrix

$$
P=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]
$$

satisfies the equation $B=P^{-1} A P$ which we can verify by computing $P B$ and $A P$:

$$
\begin{aligned}
& P B=\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 3 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right], \\
& A P=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 2 \\
1 & 5
\end{array}\right] .
\end{aligned}
$$

Example. The matrices

$$
A=\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right], B=\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right]
$$

also have the same characteristic polynomial $(3-\lambda)^{2}$, and so have the same eigenvalues. But there is no invertible matrix P such that $B=P^{-1} A P$.

Why? Because for

$$
P=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]
$$

we have that

$$
\begin{aligned}
P B & =\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
0 & 3
\end{array}\right]=\left[\begin{array}{ll}
3 a & a+3 b \\
3 c & c+3 d
\end{array}\right], \\
A P & =\left[\begin{array}{ll}
3 & 0 \\
0 & 3
\end{array}\right]\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]=\left[\begin{array}{ll}
3 a & 3 b \\
3 c & 3 d
\end{array}\right],
\end{aligned}
$$

which forces $a=0$ and $c=0$, and hence P is not invertible.
Definitions. For two $n \times n$ matrices A and B, we say that A is similar to B if there exists an invertible $n \times n$ matrix P such that $B=P^{-1} A P$.
Writing $Q=P^{-1}$ we have $A=Q^{-1} B Q$, and so B is similar to A.
We can thus simple say that A and B are similar.
For a fixed invertible matrix P, the mapping taking A in $M_{n \times n}$ to $P^{-1} A P$ in $M_{n \times n}$ is called a similarity transformation.

Theorem 4. If two $n \times n$ matrices A and B are similar, then they have the same characteristic polynomial (and hence the same eigenvalues with the same algebraic multiplicities).
Proof. Suppose A and B are similar.
Then there exists an invertible matrix P such that $B=P^{-1} A P$.
The

$$
B-\lambda I=P^{-1} A P-\lambda I=P^{-1} A P-\lambda P^{-1} I P=P^{-1}(A-\lambda I) P .
$$

Computing the characteristic polynomial of B we have

$$
\operatorname{det}(B-\lambda I)=\operatorname{det}\left(P^{-1}(A-\lambda I) P\right)=\operatorname{det}\left(P^{-1}\right) \operatorname{det}(A-\lambda I) \operatorname{det}(P)
$$

Since $\operatorname{det}\left(P^{-1}\right) \operatorname{det}(P)=\operatorname{det}\left(P^{-1} P\right)=\operatorname{det}(I)=1$, we arrive at $\operatorname{det}(B-\lambda I)=\operatorname{det}(A-\lambda I)$.
Therefore A and B have the same characteristic polynomial.

