Math 313 Lecture #23 §5.3: Diagonalization

A Motivational Example. Recall that the eigenvalues and eigenvectors of

$$
A = \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \text{ are } \lambda_1 = 3, \ \vec{v}_1 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}, \ \lambda_2 = -1, \ \vec{v}_2 = \begin{bmatrix} 1 \\ -2 \end{bmatrix}.
$$

Let P be the matrix whose columns are the eigenvectors of A :

$$
P=[\vec{v}_1 \ \vec{v}_2]=\begin{bmatrix}1 & 1\\ 2 & -2\end{bmatrix}.
$$

The matrix P is invertible since its columns are linearly independent; its inverse is

$$
P^{-1} = \frac{1}{-4} \begin{bmatrix} -2 & -1 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{bmatrix}.
$$

The matrix $P^{-1}AP$ is similar to the matrix A. What is $P^{-1}AP$? Well,

$$
P^{-1}AP = \begin{bmatrix} 1/2 & 1/4 \\ 1/2 & -1/4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 4 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 3/2 & 3/4 \\ -1/2 & 1/4 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 2 & -2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 3/2 + 3/2 & 3/2 - 3/2 \\ -1/2 + 1/2 & -1/2 - 1/2 \end{bmatrix}
$$

=
$$
\begin{bmatrix} 3 & 0 \\ 0 & -1 \end{bmatrix}.
$$

Recognize the entries on the diagonal of this matrix? They are the eigenvalues of A in the order in which their eigenvectors were placed in $P!$

Definitions. An $n \times n$ matrix A is **diagonalizable** if it is similar to a diagonal matrix.

We call an invertible matrix P for which $P^{-1}AP$ is diagonal, a **diagonalizing matrix** for A.

Is every square matrix diagonalizable?

Theorem 5. An $n \times n$ matrix A is diagonalizable if and only if A has n linearly independent eigenvectors.

Proof. For any invertible matrix P with columns $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and any diagonal matrix D with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$, we have

$$
AP = A \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} = \begin{bmatrix} A\vec{v}_1 & A\vec{v}_2 & \cdots & A\vec{v}_n \end{bmatrix},
$$

\n
$$
PD = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix} = \begin{bmatrix} \lambda_1 \vec{v}_1 & \lambda_2 \vec{v}_2 & \cdots & \lambda_n \vec{v}_n \end{bmatrix}.
$$

Suppose that A has n linearly independent eigenvectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$.

Let λ_i be the eigenvalue of A corresponding to \vec{v}_i , i.e., $A\vec{v}_i = \lambda_i \vec{v}_i$.

Then $AP = PD$.

Why is P invertible? Because its columns form a linearly independent set, so by the Inverse Matrix Theorem, P is invertible.

Thus we have $D = P^{-1}AP$, and so A is diagonalizable with diagonalizing matrix P.

Now suppose that A is diagonalizable.

Then there is an invertible matrix P with columns $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$ and a diagonal matrix D with diagonal entries $\lambda_1, \lambda_2, \ldots, \lambda_n$ such that $D = P^{-1}AP$.

So $PD = AP$, which means $A\vec{v}_i = \lambda_i \vec{v}_i$ for each $i = 1, 2, ..., n$, that is, each \vec{v}_i is an eigenvector of A.

Since P is invertible, the columns of P form an independent set of vectors, and therefore A has n linearly independent eigenvectors. \square

Theorem 6. If an $n \times n$ matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof. Any set of n eigenvectors corresponding to the n distinct eigenvalues are linearly independent, and so A is diagonalizable by Theorem 5.

Example. Is
$$
A = \begin{bmatrix} -1 & -3 & -4 \\ 1 & 3 & 2 \\ 1 & 1 & 3 \end{bmatrix}
$$
 diagonalizable?

The characteristic polynomial of A is

$$
p(\lambda) = -\lambda^3 + 5\lambda^2 - 8\lambda + 4 = -(\lambda - 1)(\lambda - 2)^2.
$$

So the eigenvalues of A are $\lambda_1 = 1$, $\lambda_2 = 2$, and $\lambda_3 = 2$.

Row reduction of $A - I$ gives the eigenspace of A belonging the eigenvalue 1 of algebraic multiplicity 1:

$$
A - I = \begin{bmatrix} -2 & -3 & -4 \\ 1 & 2 & 2 \\ 1 & 1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{Nul}(A - I) = \text{Span}\left(\begin{bmatrix} -2 \\ 0 \\ 1 \end{bmatrix}\right).
$$

The **geometric multiplicity** of the eigenvalue 1 is 1, the dimension of Nul($A - I$).

An eigenvector of A belonging to $\lambda_1 = 1$ is $\vec{v}_1 = [-2 \ 0 \ 1]^T$.

Row reduction of $A - 2I$ gives the eigenspace of A belonging to eigenvalue 2 of algebraic multiplicity 2:

$$
A - 2I = \begin{bmatrix} -3 & -3 & -4 \\ 1 & 1 & 2 \\ 1 & 1 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \Rightarrow \text{Nul}(A - 2I) = \text{Span}\left(\begin{bmatrix} -1 \\ 1 \\ 0 \end{bmatrix}\right).
$$

The geometric multiplicity of the eigenvalue 2 is not 2 but is 1, the dimension of $\text{Nul}(A-2I).$

An eigenvector of A belonging to the eigenvalue 2 is $\vec{v}_2 = [-1 \ 1 \ 0]^T$.

The two eigenvectors \vec{v}_1, \vec{v}_2 are linearly independent.

Is there a third eigenvector \vec{v}_3 for which the set of $\vec{v}_1, \vec{v}_2, \vec{v}_3$ is linearly independent?

If there were, then $A\vec{v}_3 = \lambda \vec{v}_3$ for an eigenvalue λ of A, which would mean that $\vec{v}_3 \in$ Nul(A − I) or $\vec{v}_3 \in$ Nul(A − 2I), hence \vec{v}_3 would be a nonzero scalar multiple of \vec{v}_1 or \vec{v}_2 .

But then $\vec{v}_1, \vec{v}_2, \vec{v}_3$ would form a linearly dependent set.

So, A has only 2 linearly independent eigenvectors, and is not diagaonalizable.

Could an $n \times n$ matrix be diagonalizable when it does not have n distinct eigenvalues?

Theorem 7. Let A be an $n \times n$ matrix whose distinct eigenvalues are $\lambda_1, \ldots, \lambda_p$.

- a. For each $k = 1, \ldots, p$, the geometric multiplicity of λ_k is less than or equal to its algebraic multiplicity.
- b. The $n \times n$ matrix A is diagonalizable if and only if the sum of the geometric multiplicities of its eigenvalues equals n which happens if and only if the geometric multiplicity of each eigenvalue is equal to its algebraic multiplicity.
- c. If A is diagonalizable and \mathcal{B}_k is a basis of the eigenspace Nul($A \lambda_k I$) for each k, then the union of the \mathcal{B}_k is an eigenvector basis for \mathbb{R}^n .

Example. Is
$$
A = \begin{bmatrix} 2 & -2 & 2 \\ 0 & 0 & 2 \\ 0 & -1 & 3 \end{bmatrix}
$$
 diagonalizable?

The characteristic polynomial of A is $\det(A - \lambda I) = -(\lambda - 1)(\lambda - 2)^2$.

The eigenvalue $\lambda = 1$ has algebraic multiplicity 1.

Its geometric multiplicity of 1. Why? Because there is a linearly independent solution of $(A - I)\vec{x} = \vec{0}$, but no more than one.

The eigenvalue $\lambda = 2$ has algebraic multiplicity 2.

What is its geometric multiplicity?

We row reduce $A - 2I$ to find out:

$$
A - 2I = \begin{bmatrix} 0 & -2 & 2 \\ 0 & -2 & 2 \\ 0 & -1 & 1 \end{bmatrix} \sim \begin{bmatrix} 0 & 1 & -1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.
$$

There are two free variables, and so dim $\text{Nul}(A - 2I) = 2$, meaning the geometric multiplicity of $\lambda = 2$ is 2.

Thus the matrix A is diagonalizable.