
Math 313 Lecture #23
§5.3: Diagonalization

A Motivational Example. Recall that the eigenvalues and eigenvectors of

A =

[
1 1
4 1

]
are λ1 = 3, ~v1 =

[
1
2

]
, λ2 = −1, ~v2 =

[
1
−2

]
.

Let P be the matrix whose columns are the eigenvectors of A:

P = [~v1 ~v2] =

[
1 1
2 −2

]
.

The matrix P is invertible since its columns are linearly independent; its inverse is

P−1 =
1

−4

[
−2 −1
−2 1

]
=

[
1/2 1/4
1/2 −1/4

]
.

The matrix P−1AP is similar to the matrix A.

What is P−1AP? Well,

P−1AP =

[
1/2 1/4
1/2 −1/4

] [
1 1
4 1

] [
1 1
2 −2

]
=

[
3/2 3/4
−1/2 1/4

] [
1 1
2 −2

]
=

[
3/2 + 3/2 3/2− 3/2
−1/2 + 1/2 −1/2− 1/2

]
=

[
3 0
0 −1

]
.

Recognize the entries on the diagonal of this matrix? They are the eigenvalues of A in
the order in which their eigenvectors were placed in P !

Definitions. An n×n matrix A is diagonalizable if it is similar to a diagonal matrix.

We call an invertible matrix P for which P−1AP is diagonal, a diagonalizing matrix
for A.

Is every square matrix diagonalizable?

Theorem 5. An n × n matrix A is diagonalizable if and only if A has n linearly
independent eigenvectors.

Proof. For any invertible matrix P with columns ~v1, ~v2, . . . , ~vn and any diagonal matrix
D with diagonal entries λ1, λ2, . . . , λn, we have

AP = A
[
~v1 ~v2 · · · ~vn

]
=
[
A~v1 A~v2 · · · A~vn

]
,

PD =
[
~v1 ~v2 · · · ~vn

]

λ1 0 · · · 0
0 λ2 · · · 0
...

...
. . .

...
0 0 · · · λn

 =
[
λ1~v1 λ2~v2 · · · λn~vn

]
.



Suppose that A has n linearly independent eigenvectors ~v1, ~v2, . . . , ~vn.

Let λi be the eigenvalue of A corresponding to ~vi, i.e., A~vi = λi~vi.

Then AP = PD.

Why is P invertible? Because its columns form a linearly independent set, so by the
Inverse Matrix Theorem, P is invertible.

Thus we have D = P−1AP , and so A is diagonalizable with diagonalizing matrix P .

Now suppose that A is diagonalizable.

Then there is an invertible matrix P with columns ~v1, ~v2, . . . , ~vn and a diagonal matrix
D with diagonal entries λ1, λ2, . . . , λn such that D = P−1AP .

So PD = AP , which means A~vi = λi~vi for each i = 1, 2, . . . , n, that is, each ~vi is an
eigenvector of A.

Since P is invertible, the columns of P form an independent set of vectors, and therefore
A has n linearly independent eigenvectors. �

Theorem 6. If an n× n matrix A has n distinct eigenvalues, then A is diagonalizable.

Proof. Any set of n eigenvectors corresponding to the n distinct eigenvalues are linearly
independent, and so A is diagonalizable by Theorem 5. �

Example. Is A =

−1 −3 −4
1 3 2
1 1 3

 diagonalizable?

The characteristic polynomial of A is

p(λ) = −λ3 + 5λ2 − 8λ+ 4 = −(λ− 1)(λ− 2)2.

So the eigenvalues of A are λ1 = 1, λ2 = 2, and λ3 = 2.

Row reduction of A− I gives the eigenspace of A belonging the eigenvalue 1 of algebraic
multiplicity 1:

A− I =

−2 −3 −4
1 2 2
1 1 2

 ∼
1 0 2

0 1 0
0 0 0

 ⇒ Nul(A− I) = Span

−2
0
1

 .

The geometric multiplicity of the eigenvalue 1 is 1, the dimension of Nul(A− I).

An eigenvector of A belonging to λ1 = 1 is ~v1 = [−2 0 1]T .

Row reduction of A− 2I gives the eigenspace of A belonging to eigenvalue 2 of algebraic
multiplicity 2:

A− 2I =

−3 −3 −4
1 1 2
1 1 1

 ∼
1 1 0

0 0 1
0 0 0

 ⇒ Nul(A− 2I) = Span

−1
1
0

 .

The geometric multiplicity of the eigenvalue 2 is not 2 but is 1, the dimension of
Nul(A− 2I).



An eigenvector of A belonging to the eigenvalue 2 is ~v2 = [−1 1 0]T .

The two eigenvectors ~v1, ~v2 are linearly independent.

Is there a third eigenvector ~v3 for which the set of ~v1, ~v2, ~v3 is linearly independent?

If there were, then A~v3 = λ~v3 for an eigenvalue λ of A, which would mean that ~v3 ∈
Nul(A− I) or ~v3 ∈ Nul(A− 2I), hence ~v3 would be a nonzero scalar multiple of ~v1 or ~v2.

But then ~v1, ~v2, ~v3 would form a linearly dependent set.

So, A has only 2 linearly independent eigenvectors, and is not diagaonalizable.

Could an n× n matrix be diagonalizable when it does not have n distinct eigenvalues?

Theorem 7. Let A be an n× n matrix whose distinct eigenvalues are λ1, . . . , λp.

a. For each k = 1, . . . , p, the geometric multiplicity of λk is less than or equal to its
algebraic multiplicity.

b. The n × n matrix A is diagonalizable if and only if the sum of the geometric
multiplicities of its eigenvalues equals n which happens if and only if the geometric
multiplicity of each eigenvalue is equal to its algebraic multiplicity.

c. If A is diagonalizable and Bk is a basis of the eigenspace Nul(A− λkI) for each k,
then the union of the Bk is an eigenvector basis for Rn.

Example. Is A =

2 −2 2
0 0 2
0 −1 3

 diagonalizable?

The characteristic polynomial of A is det(A− λI) = −(λ− 1)(λ− 2)2.

The eigenvalue λ = 1 has algebraic multiplicity 1.

Its geometric multiplicity of 1. Why? Because there is a linearly independent solution of
(A− I)~x = ~0, but no more than one.

The eigenvalue λ = 2 has algebraic multiplicity 2.

What is its geometric multiplicity?

We row reduce A− 2I to find out:

A− 2I =

0 −2 2
0 −2 2
0 −1 1

 ∼
0 1 −1

0 0 0
0 0 0

 .
There are two free variables, and so dim Nul(A− 2I) = 2, meaning the geometric multi-
plicity of λ = 2 is 2.

Thus the matrix A is diagonalizable.


