Math 313 Lecture \#24
 §5.5: Complex Eignenvalues

Recall that the eigenvalues of an $n \times n$ matrix A with real entries are the roots of a polynomial of degree n and real coefficients.

It is therefore possible that some or all of the eigenvalues can be complex numbers.
To gain an understanding of what a complex valued eigenvalue means, we extend the domain and codomain of $\vec{x} \mapsto A \vec{x}$ from \mathbb{R}^{n} to \mathbb{C}^{n}.
We do this because when λ is a complex valued eigenvalue of A, a nontrivial solution of $A \vec{x}=\lambda \vec{x}$ will be a complex valued vector in \mathbb{C}^{n}. [We will demonstrate this in a moment.]
We call λ a complex eigenvalue and \vec{x} a complex eigenvector.
Example. Recall that the rotation matrix for a given angle θ is

$$
R=\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]
$$

Does this rotation have a real eigenvalue/eigenvector pair? Only when θ is a multiple of π, because $R \vec{x}$ is a rotation of \vec{x} by θ in the counterclockwise direction, and only when θ is multiple of π is $A \vec{x}$ a real scalar multiple of \vec{x}.
If we take $\theta=\pi / 2$, then we have the rotation by $\pi / 2$:

$$
A=\left[\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right]
$$

The characteristic polynomial of A is $\lambda^{2}+1$ which has pure imaginary roots $\pm \sqrt{-1}= \pm i$. An eigenvector for the eigenvalue i is a nonzero vector in the null space of

$$
A-i I=\left[\begin{array}{cc}
-i & -1 \\
1 & -i
\end{array}\right]
$$

Does this matrix have determinant zero? Yes it does: $(-i)(-i)+1=i^{2}+1=-1+1=0$.
That means that the two rows are linearly dependent. Is one row a scalar multiple of the other? real or complex scalar?
The second row of $A-i I$ is i times the first row, so we can eliminate the second row.
A complex eigenvector of A for the eigenvalue $\lambda=i$ is

$$
\vec{v}_{1}=\left[\begin{array}{c}
1 \\
-i
\end{array}\right] .
$$

An eigenvector for the eigenvalue $\lambda=-i$ is a nonzero vector in the null space of

$$
A+i I=\left[\begin{array}{cc}
i & -1 \\
1 & i
\end{array}\right]
$$

Does $A+i I$ have determinant zero? Yes, it does because $i^{2}+1=-1+1=0$.
Thus one row of $A+i I$ is a scalar multiple of the other row: multiplying the first row by $-i$ gives the second row.

A complex eigenvector of A for the eigenvalue $\lambda=-i$ is

$$
\vec{v}_{2}=\left[\begin{array}{l}
1 \\
i
\end{array}\right]
$$

What do you notice about the eigenvalue/eigenvector pairs here? That the eigenvalues are complex conjugates of each other AND their eigenvectors are also complex conjugates of each other (where we understand the complex conjugate of a vector to be the complex conjugate of the entries). More about this in a minute.
The complex matrix

$$
P=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-i & i
\end{array}\right]
$$

is invertible because $a d-b c=i+i=2 i \neq 0$.
The invertible matrix P is a diagonalizing matrix for A :

$$
P^{-1} A P=\left[\begin{array}{cc}
i & 0 \\
0 & -i
\end{array}\right]
$$

Although the diagonal matrix is the "simplest view" of what the matrix A does as a linear transformation on \mathbb{C}^{2}, it hides what it does on \mathbb{R}^{2}.
There is a way to keep things in \mathbb{R}^{2} instead of \mathbb{C}^{2}.
This way requires that we consider the real and imaginary parts of a complex eigenvector.
Every complex eigenvector \vec{x} can be "pulled apart" into a real part and an imaginary part:

$$
\vec{x}=\vec{a}+i \vec{b}=\operatorname{Re} \vec{x}+i \operatorname{Im} \vec{x} .
$$

Example. Pulling apart a complex vector into its real and imaginary parts is

$$
\vec{x}=\left[\begin{array}{c}
1+i \\
2 \\
-i \\
4-3 i
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
0 \\
4
\end{array}\right]+i\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-3
\end{array}\right]
$$

So

$$
\operatorname{Re} \vec{x}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
4
\end{array}\right], \quad \operatorname{Im} \vec{x}=\left[\begin{array}{c}
1 \\
0 \\
-1 \\
-3
\end{array}\right]
$$

The complex conjugate of a complex number $z=a+b i$ is the complex number $\bar{z}=a-b i$. This readily extends to vectors and matrices entry wise.

So, if $\lambda=a+b i$ is a complex eigenvalue of A and \vec{x} is an eigenvector of A corresponding to λ, then

$$
A \overline{\vec{x}}=\overline{A \vec{x}}=\overline{\lambda \vec{x}}=\bar{\lambda} \overline{\vec{x}} .
$$

What is this saying? That $\bar{\lambda}$ is an eigenvalue of A and $\overline{\vec{x}}$ is an eigenvector of A corresponding to $\bar{\lambda}$.
Remembering seeing this in the previous example that the complex conjugate eigenvalues have complex conjugate eigenvectors?
When A is a real matrix, its complex eigenvalues occur in complex conjugate pairs, and the corresponding complex eigenvectors can be chosen to occur in complex conjugate pairs.
We identify a prototype of a real 2×2 matrix A whose eigenvalues are a complex conjugate pair.
Example. The characteristic polynomial of the matrix

$$
C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

with real a and b, not both zero, is

$$
\operatorname{det}(C-\lambda I)=\left|\begin{array}{cc}
a-\lambda & -b \\
b & a-\lambda
\end{array}\right|=(a-\lambda)^{2}+b^{2}=\lambda^{2}-2 a \lambda+a^{2}+b^{2}
$$

By the quadratic formula, the roots of the characteristic polynomial are

$$
\lambda=\frac{2 a \pm \sqrt{4 a^{2}-4\left(a^{2}+b^{2}\right)}}{2}=a \pm \sqrt{-b^{2}}=a \pm b i .
$$

If we set $r=|\lambda|=\sqrt{a^{2}+b^{2}} \neq 0$ (the distance from the origin to the point (a, b) in the plane), and θ the angle between the positive horizontal axis and the ray from the origin to the point (a, b) (think polar coordinates!), then

$$
C=r\left[\begin{array}{cc}
a / r & -b / r \\
b / r & a / r
\end{array}\right]=\left[\begin{array}{cc}
r & 0 \\
0 & r
\end{array}\right]\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right] .
$$

The matrix C as a linear transformation is the composition of a rotation by angle θ with a scaling by λ.
/ / / /
Every real 2×2 matrix A with complex conjugate eigenvalues is similar to such a C, with the columns of the invertible matrix P being the real and imaginary parts of a complex eigenvector.
Theorem 9. Let A be a real 2×2 matrix with a complex eigenvalue $\lambda=a-b i$ with $b \neq 0$, and associated eigenvector \vec{v}. Then

$$
A=P C P^{-1} \text { for } C=\left[\begin{array}{cc}
a & -b \\
b & a
\end{array}\right]
$$

where $P=\left[\begin{array}{ll}\operatorname{Re} \vec{v} & \operatorname{Im} \vec{v}\end{array}\right]$.

Example. For

$$
A=\left[\begin{array}{ll}
-7 & 15 \\
-6 & 11
\end{array}\right],
$$

find the matrix C for which $A=P C P^{-1}$.
The characteristic polynomial of A is

$$
\operatorname{det}(A-\lambda I)=\lambda^{2}-4 \lambda+13
$$

The eigenvalues of A are

$$
\lambda=\frac{4 \pm \sqrt{16-52}}{2}=2 \pm 3 i .
$$

By Theorem 9, the matrix C for which $A=P C P^{-1}$ is

$$
C=\left[\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right]
$$

To verify this, we find P for which $A=P C P^{-1}$.
An eigenvector for $\lambda=2-3 i$ is a nonzero vector in the null space of

$$
A-\lambda I=\left[\begin{array}{cc}
-9+3 i & 15 \\
-6 & 9+3 i
\end{array}\right]
$$

The matrix is noninvertible because its determinant is $-81-9+90=0$.
Elimination of the first row gives as an eigenvector

$$
\vec{v}=\left[\begin{array}{c}
3+i \\
2
\end{array}\right] .
$$

We split this eigenvector into its real and imaginary parts that form the columns of

$$
P=\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]
$$

We then verify that $A=P C P^{-1}$ or the easier $A P=P C$:

$$
\begin{aligned}
& A P=\left[\begin{array}{ll}
-7 & 15 \\
-6 & 11
\end{array}\right]\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]=\left[\begin{array}{cc}
8 & 1 \\
5 & -1
\end{array}\right], \\
& P C=\left[\begin{array}{ll}
3 & 1 \\
2 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & -3 \\
3 & 2
\end{array}\right]=\left[\begin{array}{cc}
8 & 1 \\
5 & -1
\end{array}\right] .
\end{aligned}
$$

