
Math 313 Lecture #24
§5.5: Complex Eignenvalues

Recall that the eigenvalues of an n × n matrix A with real entries are the roots of a
polynomial of degree n and real coefficients.

It is therefore possible that some or all of the eigenvalues can be complex numbers.

To gain an understanding of what a complex valued eigenvalue means, we extend the
domain and codomain of ~x 7→ A~x from Rn to Cn.

We do this because when λ is a complex valued eigenvalue of A, a nontrivial solution of
A~x = λ~x will be a complex valued vector in Cn. [We will demonstrate this in a moment.]

We call λ a complex eigenvalue and ~x a complex eigenvector.

Example. Recall that the rotation matrix for a given angle θ is

R =

[
cos θ − sin θ
sin θ cos θ

]
.

Does this rotation have a real eigenvalue/eigenvector pair? Only when θ is a multiple of
π, because R~x is a rotation of ~x by θ in the counterclockwise direction, and only when θ
is multiple of π is A~x a real scalar multiple of ~x.

If we take θ = π/2, then we have the rotation by π/2:

A =

[
0 −1
1 0

]
.

The characteristic polynomial of A is λ2+1 which has pure imaginary roots ±
√
−1 = ±i.

An eigenvector for the eigenvalue i is a nonzero vector in the null space of

A− iI =

[
−i −1
1 −i

]
.

Does this matrix have determinant zero? Yes it does: (−i)(−i)+1 = i2+1 = −1+1 = 0.

That means that the two rows are linearly dependent. Is one row a scalar multiple of the
other? real or complex scalar?

The second row of A− iI is i times the first row, so we can eliminate the second row.

A complex eigenvector of A for the eigenvalue λ = i is

~v1 =

[
1
−i

]
.

An eigenvector for the eigenvalue λ = −i is a nonzero vector in the null space of

A+ iI =

[
i −1
1 i

]
.



Does A+ iI have determinant zero? Yes, it does because i2 + 1 = −1 + 1 = 0.

Thus one row of A+ iI is a scalar multiple of the other row: multiplying the first row by
−i gives the second row.

A complex eigenvector of A for the eigenvalue λ = −i is

~v2 =

[
1
i

]
.

What do you notice about the eigenvalue/eigenvector pairs here? That the eigenvalues
are complex conjugates of each other AND their eigenvectors are also complex conjugates
of each other (where we understand the complex conjugate of a vector to be the complex
conjugate of the entries). More about this in a minute.

The complex matrix

P =
[
~v1 ~v2

]
=

[
1 1
−i i

]
is invertible because ad− bc = i+ i = 2i 6= 0.

The invertible matrix P is a diagonalizing matrix for A:

P−1AP =

[
i 0
0 −i

]
.

Although the diagonal matrix is the “simplest view” of what the matrix A does as a
linear transformation on C2, it hides what it does on R2. / / / /

There is a way to keep things in R2 instead of C2.

This way requires that we consider the real and imaginary parts of a complex eigenvector.

Every complex eigenvector ~x can be “pulled apart” into a real part and an imaginary
part:

~x = ~a+ i~b = Re ~x+ iIm ~x.

Example. Pulling apart a complex vector into its real and imaginary parts is

~x =


1 + i

2
−i

4− 3i

 =


1
2
0
4

+ i


1
0
−1
−3

 .
So

Re ~x =


1
2
0
4

 , Im ~x =


1
0
−1
−3

 .
The complex conjugate of a complex number z = a+bi is the complex number z = a−bi.
This readily extends to vectors and matrices entry wise.



So, if λ = a+ bi is a complex eigenvalue of A and ~x is an eigenvector of A corresponding
to λ, then

A~x = A~x = λ~x = λ~x.

What is this saying? That λ is an eigenvalue of A and ~x is an eigenvector of A corre-
sponding to λ.

Remembering seeing this in the previous example that the complex conjugate eigenvalues
have complex conjugate eigenvectors?

When A is a real matrix, its complex eigenvalues occur in complex conjugate pairs, and
the corresponding complex eigenvectors can be chosen to occur in complex conjugate
pairs.

We identify a prototype of a real 2×2 matrix A whose eigenvalues are a complex conjugate
pair.

Example. The characteristic polynomial of the matrix

C =

[
a −b
b a

]
with real a and b, not both zero, is

det(C − λI) =

∣∣∣∣a− λ −b
b a− λ

∣∣∣∣ = (a− λ)2 + b2 = λ2 − 2aλ+ a2 + b2.

By the quadratic formula, the roots of the characteristic polynomial are

λ =
2a±

√
4a2 − 4(a2 + b2)

2
= a±

√
−b2 = a± bi.

If we set r = |λ| =
√
a2 + b2 6= 0 (the distance from the origin to the point (a, b) in the

plane), and θ the angle between the positive horizontal axis and the ray from the origin
to the point (a, b) (think polar coordinates!), then

C = r

[
a/r −b/r
b/r a/r

]
=

[
r 0
0 r

] [
cos θ − sin θ
sin θ cos θ

]
.

The matrix C as a linear transformation is the composition of a rotation by angle θ with
a scaling by λ. / / / /

Every real 2×2 matrix A with complex conjugate eigenvalues is similar to such a C, with
the columns of the invertible matrix P being the real and imaginary parts of a complex
eigenvector.

Theorem 9. Let A be a real 2 × 2 matrix with a complex eigenvalue λ = a − bi with
b 6= 0, and associated eigenvector ~v. Then

A = PCP−1 for C =

[
a −b
b a

]
where P =

[
Re~v Im~v

]
.



Example. For

A =

[
−7 15
−6 11

]
,

find the matrix C for which A = PCP−1.

The characteristic polynomial of A is

det(A− λI) = λ2 − 4λ+ 13.

The eigenvalues of A are

λ =
4±
√

16− 52

2
= 2± 3i.

By Theorem 9, the matrix C for which A = PCP−1 is

C =

[
2 −3
3 2

]
.

To verify this, we find P for which A = PCP−1.

An eigenvector for λ = 2− 3i is a nonzero vector in the null space of

A− λI =

[
−9 + 3i 15
−6 9 + 3i

]
.

The matrix is noninvertible because its determinant is −81− 9 + 90 = 0.

Elimination of the first row gives as an eigenvector

~v =

[
3 + i

2

]
.

We split this eigenvector into its real and imaginary parts that form the columns of

P =

[
3 1
2 0

]
.

We then verify that A = PCP−1 or the easier AP = PC:

AP =

[
−7 15
−6 11

] [
3 1
2 0

]
=

[
8 1
5 −1

]
,

PC =

[
3 1
2 0

] [
2 −3
3 2

]
=

[
8 1
5 −1

]
.


