Math 313 Lecture \#25

§6.1: Inner Product, Length, and Orthogonality

We will now impose on the vector space \mathbb{R}^{n} a structure that enables us to define geometric notions of length and angle between vectors.

We define the inner product of two vectors \vec{u}, \vec{v} in \mathbb{R}^{n} to be the scalar quantity

$$
\vec{u} \cdot \vec{v}=\vec{u}^{T} \vec{v}=\left[\begin{array}{llll}
u_{1} & u_{2} & \ldots & u_{n}
\end{array}\right]\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]=u_{1} v_{1}+u_{2} v_{2}+\cdots u_{n} v_{n}=\sum_{i=1}^{n} u_{i} v_{i} .
$$

This inner product is also known as the dot product in \mathbb{R}^{n}.
Theorem 1. The inner product $\vec{u} \cdot \vec{v}$ on \mathbb{R}^{n} satisfies
a. $\vec{u} \cdot \vec{v}=\vec{v} \cdot \vec{u}$,
b. $(\vec{u}+\vec{v}) \cdot \vec{w}=\vec{u} \cdot \vec{w}+\vec{v} \cdot \vec{w}$,
c. $(c \vec{u}) \cdot \vec{v}=c(\vec{u} \cdot \vec{v})$, and
d. $\vec{u} \cdot \vec{u} \geq 0$ and $\vec{u} \cdot \vec{u}=0$ if and only if $\vec{u}=0$.

The length, or norm of a vector \vec{x} in \mathbb{R}^{n} is the nonnegative quantity

$$
\|\vec{u}\|=\sqrt{(\vec{u} \cdot \vec{u})}=\sqrt{u_{1}^{2}+u_{2}^{2}+\cdots+u_{n}^{2}}
$$

An important variation of this is the equation

$$
\|\vec{u}\|^{2}=\vec{u} \cdot \vec{u} .
$$

For any scalar c, the length of $c \vec{u}$ is

$$
\|c \vec{u}\|=\sqrt{\left(c u_{1}\right)^{2}+\left(c u_{2}\right)^{2}+\cdots+\left(c u_{n}\right)^{2}}=|c|\|\vec{u}\| .
$$

A vector whose length is one is called a unit vector.
We always get a unit vector from a nonzero vector when we multiply the vector by the reciprocal of its length:

$$
\left\|\frac{1}{\|\vec{u}\|} \vec{u}\right\|=\frac{1}{\|\vec{u}\|}\|\vec{u}\|=1 .
$$

The distance between two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} is the quantity

$$
\|\vec{u}-\vec{v}\|=\sqrt{\left(u_{1}-v_{1}\right)^{2}+\left(u_{2}-v_{2}\right)^{2}+\cdots+\left(u_{n}-v_{n}\right)^{2}} .
$$

Two vectors \vec{u} and \vec{v} form an angle $0 \leq \theta \leq \pi$. How do we measure θ ?
Theorem. The angle θ between two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} satisfies

$$
\vec{u} \cdot \vec{v}=\|\vec{u}\|\|\vec{u}\| \cos \theta
$$

Proof. The vectors \vec{u}, \vec{v}, and $\vec{v}-\vec{u}$ form the sides a triangle that lies in the subspace Span $\{\vec{u}, \vec{v}\}$ (a plane, a line, or a point, all of which lie in a plane).
The law of cosines applies to this triangle:

$$
\|\vec{v}-\vec{u}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-2\|\vec{u}\|\|\vec{v}\| \cos \theta
$$

It follows that

$$
\begin{aligned}
\|\vec{u}\|\|\vec{v}\| \cos \theta & =\frac{1}{2}\left(\|\vec{u}\|^{2}+\|\vec{v}\|^{2}-\|\vec{v}-\vec{u}\|^{2}\right) \\
& =\frac{1}{2}(\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}-(\vec{v}-\vec{u}) \cdot(\vec{v}-\vec{u})) \\
& =\frac{1}{2}(\vec{u} \cdot \vec{u}+\vec{v} \cdot \vec{v}-\vec{v} \cdot \vec{v}+\vec{v} \cdot \vec{u}+\vec{u} \cdot \vec{v}-\vec{u} \cdot \vec{u}) \\
& =\frac{1}{2}(\vec{v} \cdot \vec{u}+\vec{u} \cdot \vec{v}) \\
& =\frac{1}{2}(\vec{u} \cdot \vec{v}+\vec{u} \cdot \vec{v}) \\
& =\vec{u} \cdot \vec{v} .
\end{aligned}
$$

This gives the formula that θ satisfies.
Definition. Two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} are said to be orthogonal if the angle between them is $\pi / 2$, which is to say that their inner product is 0 , and we write $\vec{u} \perp \vec{v}$.
Remember the Pythagorean Theorem that says in a right-angle triangle, the square of the hypothenuse equals the sum of the squares of the other sides?
Theorem 2 (The Pythagorean Theorem). Two vectors \vec{u} and \vec{v} in \mathbb{R}^{n} are orthogonal if and only if $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$.
Proof. For two vectors \vec{u} and \vec{v} in \mathbb{R}^{n}, we have

$$
\|\vec{u}+\vec{v}\|^{2}=(\vec{u}+\vec{v}) \cdot(\vec{u}+\vec{v})=\vec{u} \cdot \vec{u}+2 \vec{u} \cdot \vec{v}+\vec{v} \cdot \vec{v}=\|\vec{u}\|^{2}+2 \vec{u} \cdot \vec{v}+\|\vec{v}\|^{2} .
$$

By this identity, if $\vec{u} \perp \vec{v}$, then $\vec{u} \cdot \vec{v}=0$, and so $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$.
On the other hand, by the identity, if $\|\vec{u}+\vec{v}\|^{2}=\|\vec{u}\|^{2}+\|\vec{v}\|^{2}$, then $\vec{u} \cdot \vec{v}=0$, and so $\vec{u} \perp \vec{v}$.
Example. In \mathbb{R}^{4}, let $\vec{x}=\left[\begin{array}{c}1 \\ 2 \\ -1 \\ 4\end{array}\right], \vec{y}=\left[\begin{array}{c}-2 \\ 3 \\ 8 \\ 1\end{array}\right]$, and $\vec{z}=\left[\begin{array}{c}1 \\ 1 \\ -1 \\ 1\end{array}\right]$.
Although we can not sketch these vectors, we can use the inner product to get useful information about them.

The inner products of pairs of these vectors are

$$
\begin{aligned}
& \vec{x} \cdot \vec{y}=-2+6-8+4=0, \\
& \vec{x} \cdot \vec{z}=1+2+1+4=8 \\
& \vec{y} \cdot \vec{z}=-2+3-8+1=-6
\end{aligned}
$$

So $\vec{x} \perp \vec{y}$, while \vec{x} is not orthogonal to \vec{z}, and \vec{y} is not orthogonal to \vec{z}.
The lengths of these vectors are

$$
\begin{aligned}
\|\vec{x}\| & =\sqrt{1+4+1+16}=\sqrt{22} \\
\|\vec{y}\| & =\sqrt{4+9+64+1}=\sqrt{78} \\
\|\vec{z}\| & =\sqrt{1+1+1+1}=2
\end{aligned}
$$

So \vec{z} is the shortest of these three, while \vec{y} is the longest.
Unit vectors in the direction of \vec{x}, \vec{y}, and \vec{z} respectively are

$$
\frac{1}{\|\vec{x}\|} \vec{x}=\left[\begin{array}{c}
1 / \sqrt{22} \\
2 / \sqrt{22} \\
-1 / \sqrt{22} \\
4 / \sqrt{22}
\end{array}\right], \frac{1}{\|\vec{y}\|} \vec{y}=\left[\begin{array}{c}
-2 / \sqrt{78} \\
3 / \sqrt{78} \\
8 / \sqrt{78} \\
1 / \sqrt{78}
\end{array}\right], \frac{1}{\|\vec{z}\|} \vec{z}=\left[\begin{array}{c}
1 / 2 \\
1 / 2 \\
-1 / 2 \\
1 / 2
\end{array}\right] .
$$

Now since $\vec{x} \perp \vec{y}$, the Pythagorean Law should hold for \vec{x} and \vec{y}. We can verify this:

$$
\|\vec{x}+\vec{y}\|^{2}=\left\|[-1,5,7,5]^{T}\right\|^{2}=1+25+49+25=100
$$

while

$$
\|\vec{x}\|^{2}+\|\vec{y}\|^{2}=22+78=100
$$

Orthogonal Complements. We extend the notion of orthogonality between two vectors to between a vector and a subspace of vectors.
A vector \vec{z} in \mathbb{R}^{n} is orthogonal to a subspace W of \mathbb{R}^{n} if \vec{z} is orthogonal to every vector of W.

The orthogonal complement of W, denoted by W^{\perp}, is the set of all vectors \vec{z} in \mathbb{R}^{n} that are orthogonal to W.
Example. Every line L through the origin in \mathbb{R}^{3} is a one dimensional subspace.
The orthogonal complement of L is a plane W through the origin that makes a right angle with L.

The orthogonal complement of a plane W through the origin is a line L through the origin that makes a right angle with W.
Theorem. Let W be a subspace of \mathbb{R}^{n}. A vector \vec{x} in \mathbb{R}^{n} is orthogonal to W if and only if \vec{x} is orthogonal to every vector in a spanning set for W. The orthogonal complement W^{\perp} is a subspace of \mathbb{R}^{n}.
You will provide a proof of this theorem in the homework.
An $m \times n$ matrix A has several subspaces associated to it: its null space, its row space, and its column space.
Are any of these the orthogonal complement of others?

Theorem 3. For an $m \times n$ matrix A, there holds

$$
(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A) \text {, and }(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right) .
$$

Proof. By the row-column rule for computing $A \vec{x}$, we see that for each \vec{x} in $\operatorname{Nul}(A)$ is orthogonal to each row of A.
Since the rows of A are a spanning set for $\operatorname{Row}(A)$, we have that every \vec{x} in $\operatorname{Nul}(A)$ is orthogonal to $\operatorname{Row}(A)$.
Conversely, if \vec{x} is orthogonal to $\operatorname{Row}(A)$, then \vec{x} is orthogonal to each row of A, and hence $A \vec{x}=0$.
Hence \vec{x} is in $\operatorname{Nul}(A)$.
This shows that $(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A)$.
This works for any matrix, so it work for A^{T} which gives $\left(\operatorname{Row} A^{T}\right)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Since $\operatorname{Row}\left(A^{T}\right)=\operatorname{Col}(A)$, we have that $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Example. Let $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 2\end{array}\right]$.
The null space of A is a one dimensional subspace of \mathbb{R}^{3} :

$$
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]\right\} .
$$

The row space of A is a two dimensional subspace of \mathbb{R}^{3} :

$$
\operatorname{Row}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]\right\} .
$$

Notice that the basis vector for $\operatorname{Nul}(A)$ is orthogonal to each basis vector for $\operatorname{Row}(A)$, so indeed $(\operatorname{Row} A)^{\perp}=\operatorname{Nul}(A)$.
The null space of A^{T} is the zero dimensional subspace of \mathbb{R}^{2} :

$$
\operatorname{Nul}\left(A^{T}\right)=\{\overrightarrow{0}\} .
$$

The column space of A is the two dimensional subspace of \mathbb{R}^{2} :

$$
\operatorname{Col}(A)=\operatorname{Span}\left\{\left[\begin{array}{l}
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
2
\end{array}\right]\right\} .
$$

Notice that the zero vector is orthogonal to every vector in $\operatorname{Col}(A)$, so indeed $(\operatorname{Col} A)^{\perp}=$ $\operatorname{Nul}\left(A^{T}\right)$.

