Math 313 Lecture #25 §6.1: Inner Product, Length, and Orthogonality

We will now impose on the vector space \mathbb{R}^n a structure that enables us to define geometric notions of length and angle between vectors.

We define the **inner product** of two vectors \vec{u}, \vec{v} in \mathbb{R}^n to be the scalar quantity

$$\vec{u} \cdot \vec{v} = \vec{u}^T \vec{v} = [u_1 \ u_2 \ \dots \ u_n] \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{bmatrix} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i.$$

This inner product is also known as the **dot product** in \mathbb{R}^n .

Theorem 1. The inner product $\vec{u} \cdot \vec{v}$ on \mathbb{R}^n satisfies

- a. $\vec{u} \cdot \vec{v} = \vec{v} \cdot \vec{u}$,
- b. $(\vec{u} + \vec{v}) \cdot \vec{w} = \vec{u} \cdot \vec{w} + \vec{v} \cdot \vec{w}$,
- c. $(c\vec{u}) \cdot \vec{v} = c(\vec{u} \cdot \vec{v})$, and
- d. $\vec{u} \cdot \vec{u} \ge 0$ and $\vec{u} \cdot \vec{u} = 0$ if and only if $\vec{u} = 0$.

The **length**, or **norm** of a vector \vec{x} in \mathbb{R}^n is the nonnegative quantity

$$\|\vec{u}\| = \sqrt{(\vec{u} \cdot \vec{u})} = \sqrt{u_1^2 + u_2^2 + \dots + u_n^2}.$$

An important variation of this is the equation

$$\|\vec{u}\|^2 = \vec{u} \cdot \vec{u}$$

For any scalar c, the length of $c\vec{u}$ is

$$||c\vec{u}|| = \sqrt{(cu_1)^2 + (cu_2)^2 + \dots + (cu_n)^2} = |c| ||\vec{u}||.$$

A vector whose length is one is called a **unit vector**.

We always get a unit vector from a nonzero vector when we multiply the vector by the reciprocal of its length:

$$\left\|\frac{1}{\|\vec{u}\|}\vec{u}\right\| = \frac{1}{\|\vec{u}\|}\|\vec{u}\| = 1$$

The **distance** between two vectors \vec{u} and \vec{v} in \mathbb{R}^n is the quantity

$$\|\vec{u} - \vec{v}\| = \sqrt{(u_1 - v_1)^2 + (u_2 - v_2)^2 + \dots + (u_n - v_n)^2}.$$

Two vectors \vec{u} and \vec{v} form an angle $0 \le \theta \le \pi$. How do we measure θ ? Theorem. The angle θ between two vectors \vec{u} and \vec{v} in \mathbb{R}^n satisfies

$$\vec{u} \cdot \vec{v} = \|\vec{u}\| \|\vec{u}\| \cos \theta.$$

Proof. The vectors \vec{u} , \vec{v} , and $\vec{v} - \vec{u}$ form the sides a triangle that lies in the subspace $\text{Span}\{\vec{u}, \vec{v}\}$ (a plane, a line, or a point, all of which lie in a plane).

The law of cosines applies to this triangle:

$$\|\vec{v} - \vec{u}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2 - 2\|\vec{u}\| \|\vec{v}\| \cos\theta$$

It follows that

$$\begin{aligned} \|\vec{u}\| \|\vec{v}\| &\cos\theta = \frac{1}{2} \left(\|\vec{u}\|^2 + \|\vec{v}\|^2 - \|\vec{v} - \vec{u}\|^2 \right) \\ &= \frac{1}{2} \left(\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - (\vec{v} - \vec{u}) \cdot (\vec{v} - \vec{u}) \right) \\ &= \frac{1}{2} \left(\vec{u} \cdot \vec{u} + \vec{v} \cdot \vec{v} - \vec{v} \cdot \vec{v} + \vec{v} \cdot \vec{u} + \vec{u} \cdot \vec{v} - \vec{u} \cdot \vec{u} \right) \\ &= \frac{1}{2} \left(\vec{v} \cdot \vec{u} + \vec{u} \cdot \vec{v} \right) \\ &= \frac{1}{2} \left(\vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{v} \right) \\ &= \vec{u} \cdot \vec{v}. \end{aligned}$$

This gives the formula that θ satisfies.

Definition. Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are said to be **orthogonal** if the angle between them is $\pi/2$, which is to say that their inner product is 0, and we write $\vec{u} \perp \vec{v}$.

Remember the Pythagorean Theorem that says in a right-angle triangle, the square of the hypothenuse equals the sum of the squares of the other sides?

Theorem 2 (The Pythagorean Theorem). Two vectors \vec{u} and \vec{v} in \mathbb{R}^n are orthogonal if and only if $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$.

Proof. For two vectors \vec{u} and \vec{v} in \mathbb{R}^n , we have

$$\|\vec{u} + \vec{v}\|^2 = (\vec{u} + \vec{v}) \cdot (\vec{u} + \vec{v}) = \vec{u} \cdot \vec{u} + 2\vec{u} \cdot \vec{v} + \vec{v} \cdot \vec{v} = \|\vec{u}\|^2 + 2\vec{u} \cdot \vec{v} + \|\vec{v}\|^2.$$

By this *identity*, if $\vec{u} \perp \vec{v}$, then $\vec{u} \cdot \vec{v} = 0$, and so $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$.

On the other hand, by the identity, if $\|\vec{u} + \vec{v}\|^2 = \|\vec{u}\|^2 + \|\vec{v}\|^2$, then $\vec{u} \cdot \vec{v} = 0$, and so $\vec{u} \perp \vec{v}$.

Example. In
$$\mathbb{R}^4$$
, let $\vec{x} = \begin{bmatrix} 1\\2\\-1\\4 \end{bmatrix}$, $\vec{y} = \begin{bmatrix} -2\\3\\8\\1 \end{bmatrix}$, and $\vec{z} = \begin{bmatrix} 1\\1\\-1\\1 \end{bmatrix}$.

Although we can not sketch these vectors, we can use the inner product to get useful information about them.

The inner products of pairs of these vectors are

$$\vec{x} \cdot \vec{y} = -2 + 6 - 8 + 4 = 0,$$

$$\vec{x} \cdot \vec{z} = 1 + 2 + 1 + 4 = 8,$$

$$\vec{y} \cdot \vec{z} = -2 + 3 - 8 + 1 = -6.$$

So $\vec{x} \perp \vec{y}$, while \vec{x} is not orthogonal to \vec{z} , and \vec{y} is not orthogonal to \vec{z} .

The lengths of these vectors are

$$\begin{split} \|\vec{x}\| &= \sqrt{1+4+1+16} = \sqrt{22}, \\ \|\vec{y}\| &= \sqrt{4+9+64+1} = \sqrt{78}, \\ \|\vec{z}\| &= \sqrt{1+1+1+1} = 2. \end{split}$$

So \vec{z} is the shortest of these three, while \vec{y} is the longest. Unit vectors in the direction of \vec{x} , \vec{y} , and \vec{z} respectively are

$$\frac{1}{\|\vec{x}\|}\vec{x} = \begin{bmatrix} 1/\sqrt{22} \\ 2/\sqrt{22} \\ -1/\sqrt{22} \\ 4/\sqrt{22} \end{bmatrix}, \ \frac{1}{\|\vec{y}\|}\vec{y} = \begin{bmatrix} -2/\sqrt{78} \\ 3/\sqrt{78} \\ 8/\sqrt{78} \\ 1/\sqrt{78} \end{bmatrix}, \ \frac{1}{\|\vec{z}\|}\vec{z} = \begin{bmatrix} 1/2 \\ 1/2 \\ -1/2 \\ 1/2 \\ 1/2 \end{bmatrix}.$$

Now since $\vec{x} \perp \vec{y}$, the Pythagorean Law should hold for \vec{x} and \vec{y} . We can verify this:

$$\|\vec{x} + \vec{y}\|^2 = \|[-1, 5, 7, 5]^T\|^2 = 1 + 25 + 49 + 25 = 100$$

while

$$\|\vec{x}\|^2 + \|\vec{y}\|^2 = 22 + 78 = 100.$$

Orthogonal Complements. We extend the notion of orthogonality between two vectors to between a vector and a subspace of vectors.

A vector \vec{z} in \mathbb{R}^n is orthogonal to a subspace W of \mathbb{R}^n if \vec{z} is orthogonal to every vector of W.

The **orthogonal complement** of W, denoted by W^{\perp} , is the set of all vectors \vec{z} in \mathbb{R}^n that are orthogonal to W.

Example. Every line L through the origin in \mathbb{R}^3 is a one dimensional subspace.

The orthogonal complement of L is a plane W through the origin that makes a right angle with L.

The orthogonal complement of a plane W through the origin is a line L through the origin that makes a right angle with W.

Theorem. Let W be a subspace of \mathbb{R}^n . A vector \vec{x} in \mathbb{R}^n is orthogonal to W if and only if \vec{x} is orthogonal to every vector in a spanning set for W. The orthogonal complement W^{\perp} is a subspace of \mathbb{R}^n .

You will provide a proof of this theorem in the homework.

An $m \times n$ matrix A has several subspaces associated to it: its null space, its row space, and its column space.

Are any of these the orthogonal complement of others?

Theorem 3. For an $m \times n$ matrix A, there holds

 $(\operatorname{Row} A)^{\perp} = \operatorname{Nul}(A), \text{ and } (\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T).$

Proof. By the row-column rule for computing $A\vec{x}$, we see that for each \vec{x} in Nul(A) is orthogonal to each row of A.

Since the rows of A are a spanning set for $\operatorname{Row}(A)$, we have that every \vec{x} in $\operatorname{Nul}(A)$ is orthogonal to $\operatorname{Row}(A)$.

Conversely, if \vec{x} is orthogonal to Row(A), then \vec{x} is orthogonal to each row of A, and hence $A\vec{x} = 0$.

Hence \vec{x} is in Nul(A).

This shows that $(\operatorname{Row} A)^{\perp} = \operatorname{Nul}(A)$.

This works for any matrix, so it work for A^T which gives $(\operatorname{Row} A^T)^{\perp} = \operatorname{Nul}(A^T)$.

Since $\operatorname{Row}(A^T) = \operatorname{Col}(A)$, we have that $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$.

Example. Let $A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 2 \end{bmatrix}$.

The null space of A is a one dimensional subspace of \mathbb{R}^3 :

$$\operatorname{Nul}(A) = \operatorname{Span}\left\{ \begin{bmatrix} 1\\ -1\\ 0 \end{bmatrix} \right\}.$$

The row space of A is a two dimensional subspace of \mathbb{R}^3 :

$$\operatorname{Row}(A) = \operatorname{Span}\left\{ \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\2 \end{bmatrix} \right\}.$$

Notice that the basis vector for Nul(A) is orthogonal to each basis vector for Row(A), so indeed $(Row A)^{\perp} = Nul(A)$.

The null space of A^T is the zero dimensional subspace of \mathbb{R}^2 :

$$\operatorname{Nul}(A^T) = \{\vec{0}\}.$$

The column space of A is the two dimensional subspace of \mathbb{R}^2 :

$$\operatorname{Col}(A) = \operatorname{Span}\left\{ \begin{bmatrix} 1\\ 0 \end{bmatrix}, \begin{bmatrix} 0\\ 2 \end{bmatrix} \right\}.$$

Notice that the zero vector is orthogonal to every vector in $\operatorname{Col}(A)$, so indeed $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$.