
Math 313 Lecture #25
§6.1: Inner Product, Length, and Orthogonality

We will now impose on the vector space Rn a structure that enables us to define geometric
notions of length and angle between vectors.

We define the inner product of two vectors ~u,~v in Rn to be the scalar quantity

~u · ~v = ~u T~v = [u1 u2 . . . un]


v1
v2
...
vn

 = u1v1 + u2v2 + · · ·unvn =
n∑

i=1

uivi.

This inner product is also known as the dot product in Rn.

Theorem 1. The inner product ~u · ~v on Rn satisfies

a. ~u · ~v = ~v · ~u,

b. (~u+ ~v) · ~w = ~u · ~w + ~v · ~w,

c. (c~u) · ~v = c(~u · ~v), and

d. ~u · ~u ≥ 0 and ~u · ~u = 0 if and only if ~u = 0.

The length, or norm of a vector ~x in Rn is the nonnegative quantity

‖~u ‖ =
√

(~u · ~u) =
√
u21 + u22 + · · ·+ u2n.

An important variation of this is the equation

‖~u‖2 = ~u · ~u.

For any scalar c, the length of c~u is

‖c~u‖ =
√

(cu1)2 + (cu2)2 + · · ·+ (cun)2 = |c| ‖~u‖.

A vector whose length is one is called a unit vector.

We always get a unit vector from a nonzero vector when we multiply the vector by the
reciprocal of its length: ∥∥∥∥ 1

‖~u‖
~u

∥∥∥∥ =
1

‖~u‖
‖~u‖ = 1.

The distance between two vectors ~u and ~v in Rn is the quantity

‖~u− ~v ‖ =
√

(u1 − v1)2 + (u2 − v2)2 + · · ·+ (un − vn)2.

Two vectors ~u and ~v form an angle 0 ≤ θ ≤ π. How do we measure θ?

Theorem. The angle θ between two vectors ~u and ~v in Rn satisfies

~u · ~v = ‖~u ‖ ‖~u ‖ cos θ.



Proof. The vectors ~u, ~v, and ~v − ~u form the sides a triangle that lies in the subspace
Span{~u,~v} (a plane, a line, or a point, all of which lie in a plane).

The law of cosines applies to this triangle:

‖~v − ~u ‖2 = ‖~u ‖2 + ‖~v ‖2 − 2‖~u ‖ ‖~v ‖ cos θ.

It follows that

‖~u ‖ ‖~v ‖ cos θ =
1

2

(
‖~u ‖2 + ‖~v ‖2 − ‖~v − ~u ‖2

)
=

1

2

(
~u · ~u+ ~v · ~v − (~v − ~u) · (~v − ~u)

)
=

1

2

(
~u · ~u+ ~v · ~v − ~v · ~v + ~v · ~u+ ~u · ~v − ~u · ~u

)
=

1

2

(
~v · ~u+ ~u · ~v

)
=

1

2

(
~u · ~v + ~u · ~v

)
= ~u · ~v.

This gives the formula that θ satisfies. �

Definition. Two vectors ~u and ~v in Rn are said to be orthogonal if the angle between
them is π/2, which is to say that their inner product is 0, and we write ~u ⊥ ~v.

Remember the Pythagorean Theorem that says in a right-angle triangle, the square of
the hypothenuse equals the sum of the squares of the other sides?

Theorem 2 (The Pythagorean Theorem). Two vectors ~u and ~v in Rn are orthogonal if
and only if ‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2.
Proof. For two vectors ~u and ~v in Rn, we have

‖~u+ ~v ‖2 = (~u+ ~v) · (~u+ ~v) = ~u · ~u+ 2~u · ~v + ~v · ~v = ‖~u ‖2 + 2~u · ~v + ‖~v ‖2.

By this identity, if ~u ⊥ ~v, then ~u · ~v = 0, and so ‖~u+ ~v‖2 = ‖~u‖2 + ‖~v‖2.
On the other hand, by the identity, if ‖~u + ~v‖2 = ‖~u‖2 + ‖~v‖2, then ~u · ~v = 0, and so
~u ⊥ ~v. �

Example. In R4, let ~x =


1
2
−1
4

, ~y =


−2
3
8
1

, and ~z =


1
1
−1
1

.

Although we can not sketch these vectors, we can use the inner product to get useful
information about them.

The inner products of pairs of these vectors are

~x · ~y = −2 + 6− 8 + 4 = 0,

~x · ~z = 1 + 2 + 1 + 4 = 8,

~y · ~z = −2 + 3− 8 + 1 = −6.



So ~x ⊥ ~y, while ~x is not orthogonal to ~z, and ~y is not orthogonal to ~z.

The lengths of these vectors are

‖~x ‖ =
√

1 + 4 + 1 + 16 =
√

22,

‖~y ‖ =
√

4 + 9 + 64 + 1 =
√

78,

‖~z ‖ =
√

1 + 1 + 1 + 1 = 2.

So ~z is the shortest of these three, while ~y is the longest.

Unit vectors in the direction of ~x, ~y, and ~z respectively are

1

‖~x‖
~x =


1/
√

22

2/
√

22

−1/
√

22

4/
√

22

 , 1

‖~y‖
~y =


−2/
√

78

3/
√

78

8/
√

78

1/
√

78

 , 1

‖~z‖
~z =


1/2
1/2
−1/2
1/2

 .
Now since ~x ⊥ ~y, the Pythagorean Law should hold for ~x and ~y. We can verify this:

‖~x+ ~y ‖2 = ‖[−1, 5, 7, 5]T‖2 = 1 + 25 + 49 + 25 = 100

while
‖~x ‖2 + ‖~y ‖2 = 22 + 78 = 100.

Orthogonal Complements. We extend the notion of orthogonality between two
vectors to between a vector and a subspace of vectors.

A vector ~z in Rn is orthogonal to a subspace W of Rn if ~z is orthogonal to every vector
of W .

The orthogonal complement of W , denoted by W⊥, is the set of all vectors ~z in Rn

that are orthogonal to W .

Example. Every line L through the origin in R3 is a one dimensional subspace.

The orthogonal complement of L is a plane W through the origin that makes a right
angle with L.

The orthogonal complement of a plane W through the origin is a line L through the
origin that makes a right angle with W .

Theorem. Let W be a subspace of Rn. A vector ~x in Rn is orthogonal to W if and only
if ~x is orthogonal to every vector in a spanning set for W . The orthogonal complement
W⊥ is a subspace of Rn.

You will provide a proof of this theorem in the homework.

An m× n matrix A has several subspaces associated to it: its null space, its row space,
and its column space.

Are any of these the orthogonal complement of others?



Theorem 3. For an m× n matrix A, there holds

(RowA)⊥ = Nul(A), and (ColA)⊥ = Nul(AT ).

Proof. By the row-column rule for computing A~x, we see that for each ~x in Nul(A) is
orthogonal to each row of A.

Since the rows of A are a spanning set for Row(A), we have that every ~x in Nul(A) is
orthogonal to Row(A).

Conversely, if ~x is orthogonal to Row(A), then ~x is orthogonal to each row of A, and
hence A~x = 0.

Hence ~x is in Nul(A).

This shows that (RowA)⊥ = Nul(A).

This works for any matrix, so it work for AT which gives (RowAT )⊥ = Nul(AT ).

Since Row(AT ) = Col(A), we have that (ColA)⊥ = Nul(AT ). �

Example. Let A =

[
1 1 0
0 0 2

]
.

The null space of A is a one dimensional subspace of R3:

Nul(A) = Span


 1
−1
0

 .

The row space of A is a two dimensional subspace of R3:

Row(A) = Span


1

1
0

 ,
0

0
2

 .

Notice that the basis vector for Nul(A) is orthogonal to each basis vector for Row(A), so
indeed (RowA)⊥ = Nul(A).

The null space of AT is the zero dimensional subspace of R2:

Nul(AT ) = {~0 }.

The column space of A is the two dimensional subspace of R2:

Col(A) = Span

{[
1
0

]
,

[
0
2

]}
.

Notice that the zero vector is orthogonal to every vector in Col(A), so indeed (ColA)⊥ =
Nul(AT ).


