
Math 313 Lecture #26
§6.2: Orthogonal Sets

Orthogonal vectors have many properties that make them great for computations.

A set {~v1, . . . , ~vn} in Rn is said to be an orthogonal set if

~vi · ~vj = 0 when i 6= j.

Example. In R4, the vectors

~u1 =


1
1
0
0

 , ~u2 =


2
−2
1
−1

 , ~u3 =


0
0
3
3

 ,
form an orthogonal set.

Theorem 4. If {~v1, . . . , ~vn} is an orthogonal set of nonzero vectors in Rn, then the
vectors ~v1, . . . , ~vn are linearly independent.

Proof. Suppose that {~v1, . . . , ~vn} is an orthogonal set, i.e., ~vi ·~vj = 0 when i 6= j, and set

c1~v1 + · · ·+ cn~vn = ~0.

For 1 ≤ j ≤ n, taking the inner product of both sides of the linear combination equation
with ~vj gives

c1~v1 · ~vj + · · ·+ cj~vj · ~vj + · · ·+ cn~vn · ~vj = ~0 · ~vj = 0.

All of the inner products here except ~vj · ~vj are zero by orthogonality, and so we get

cj~vj · ~vj = 0.

Since ~vj 6= 0, then 0 6= ‖~vj‖2 = ~vj · ~vj, and so cj = 0.

This is true for any 1 ≤ j ≤ n, and so the vectors ~v1, . . . , ~vn are linearly independent. �

An orthogonal set {~v1, . . . , ~vn} in Rn is said to be an orthonormal set if

‖~vi ‖ = 1 for all i = 1, . . . , n.

By Theorem 4, if B = {~u1, . . . , ~un} is an orthonormal set in Rn, then B is a basis for the
subspace W = Span{~u1, . . . , ~un} of Rn.

In this case, we say that B is an orthonormal basis for W .

Example (Continued). In R4, the set of orthogonal vectors

~u1 =


1
1
0
0

 , ~u2 =


2
−2
1
−1

 , ~u3 =


0
0
3
3

 ,



can be made into an orthonormal set by scaling each vector by the reciprocal of it length:

~v1 =
~u1
‖~u1‖

=


1/
√

2

1/
√

2
0
0

 , ~v2 =
~u2
‖~u2‖

=


2/
√

10

−2/
√

10

1/
√

10

−1/
√

10

 , ~v3 =
~u3
‖~u3‖

=


0
0

3/
√

18

−3/
√

18

 .
Then {~v1, ~v2, ~v3} is an orthonormal basis for Span{~u1, ~u2, ~u3}.
[There is a way to take any basis of a subspace and convert it into an orthonormal basis.
This way is called the Gram-Schmidt process that we will learn in a future lecture.]

Orthogonality of a basis for a subspace means that computing the coordinates of any
vector in that subspace can be done using only inner products.

Theorem 5. Let {~u1, ~u2, . . . , ~up} be an orthogonal basis for a subspace W of Rn. For
each ~y in W , the unique weights in the linear combination

~y = c1~u1 + c2~u2 + · · ·+ cp~up

are given by

cj =
~y · ~uj
~uj · ~uj

, j = 1, 2, . . . , p.

Proof. We make use of the orthogonality of the basis for W when we compute

~y · ~vj = c1~u1 · ~vj + · · ·+ cj~uj · ~uj + · · ·+ cp~up · ~vj = cj~uj · ~uj.

Since {~u1, . . . , ~up} is a basis, the vector ~uj 6= 0, so that ~uj · ~uj = ‖~uj‖ 6= 0.

Solving for cj gives the desired formula. �

Example. Express

~y =


5
−3
11
7


as a linear combination of the orthogonal set of vectors

~u1 =


1
1
0
0

 , ~u2 =


2
−2
1
−1

 , ~u3 =


0
0
3
3

 .
We compute the weights by inner products:

c1 =
~y · ~u1
~u1 · ~u1

=
2

2
= 1, c2 =

~y · ~u2
~u2 · ~u2

=
20

10
= 2, c3 =

~y · ~u3
~u3 · ~u3

=
54

18
= 3.

We can indeed verify this by computing c1~u1 + c2~u2 + c3~u3 to see if it equals ~y.



An Orthogonal Projection. Let ~u be a nonzero vector in Rn.

We would like to write a vector ~y in Rn as ~y = ~p+ ~z where ~p is in the direction of ~u and
~z is orthogonal to ~p.

The vector ~p is a scalar multiple of ~u: there is a scalar α such that ~p = α~u.

With the vector ~z = ~y − ~p = ~y − α~u being orthogonal to ~u, we have

0 = (~y − α~u) · ~u = ~y · ~u− α~u · ~u.

Since ~u 6= 0, we have ~u · ~u = ‖~u‖2 6= 0, so that we can solve for α getting

α =
~y · ~u
~u · ~u

.

Having the value of α, we then have

~p = α~u =
~y · ~u
~u · ~u

~u.

This vector ~p is the orthogonal projection of ~y onto the subspace L spanned by ~u, and is
denoted by

projL~y =
~y · ~u
~u · ~u

~u.

We illustrate this situation in R2: the black colored vector (the one pointing more right
than up) is ~u, the blue colored vector (the one pointing more up than right) is ~y, and the
the green colored on (pointing more up than left) is ~z = ~u− ~p.
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More on Orthonormal Sets. Notice that the formula for a projection simplifies if
~u is a unit vector, and notice also that the formula for the weights in Theorem 5 also
simplify when the orthogonal set is an orthonormal set.

If we form a matrix U from columns vectors, we can detect if the columns form an
orthonormal set by computing a certain matrix product.



Theorem 6. An m× n matrix U has orthonormal columns if and only if UTU = I.

Proof. When we write U =
[
~u1 ~u2 · · · ~un

]
we have

UTU =


~uT1
~uT2
...
~uTn

 [~u1 ~u2 · · · ~un
]

=


~uT1 ~u1 ~uT1 ~u2 · · · ~uT1 ~un
~uT2 ~u1 ~uT2 ~u2 · · · ~uT2 ~un

...
...

. . .
...

~uTn~u1 ~uTn~u2 · · · ~uTn~un

 .
We recognize that each entry of UTU is an inner product of two of the vector ~u1, ~u2, . . . , ~vn.

When the set {~u1, ~u2, . . . , ~un} is an orthonormal set, then UTU = I.

On the other hand, if UTU = I, then {~u1, ~u2, . . . , ~un} is an orthonormal set. �


