Math 313 Lecture \#26

§6.2: Orthogonal Sets

Orthogonal vectors have many properties that make them great for computations. A set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ in \mathbb{R}^{n} is said to be an orthogonal set if

$$
\vec{v}_{i} \cdot \vec{v}_{j}=0 \text { when } i \neq j .
$$

Example. In \mathbb{R}^{4}, the vectors

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
3
\end{array}\right],
$$

form an orthogonal set.
Theorem 4. If $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^{n}, then the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent.
Proof. Suppose that $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ is an orthogonal set, i.e., $\vec{v}_{i} \cdot \vec{v}_{j}=0$ when $i \neq j$, and set

$$
c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n}=\overrightarrow{0} .
$$

For $1 \leq j \leq n$, taking the inner product of both sides of the linear combination equation with \vec{v}_{j} gives

$$
c_{1} \vec{v}_{1} \cdot \vec{v}_{j}+\cdots+c_{j} \vec{v}_{j} \cdot \vec{v}_{j}+\cdots+c_{n} \vec{v}_{n} \cdot \vec{v}_{j}=\overrightarrow{0} \cdot \vec{v}_{j}=0 .
$$

All of the inner products here except $\vec{v}_{j} \cdot \vec{v}_{j}$ are zero by orthogonality, and so we get

$$
c_{j} \vec{v}_{j} \cdot \vec{v}_{j}=0 .
$$

Since $\vec{v}_{j} \neq 0$, then $0 \neq\left\|\vec{v}_{j}\right\|^{2}=\vec{v}_{j} \cdot \vec{v}_{j}$, and so $c_{j}=0$.
This is true for any $1 \leq j \leq n$, and so the vectors $\vec{v}_{1}, \ldots, \vec{v}_{n}$ are linearly independent. An orthogonal set $\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ in \mathbb{R}^{n} is said to be an orthonormal set if

$$
\left\|\vec{v}_{i}\right\|=1 \text { for all } i=1, \ldots, n .
$$

By Theorem 4, if $\mathcal{B}=\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set in \mathbb{R}^{n}, then \mathcal{B} is a basis for the subspace $W=\operatorname{Span}\left\{\vec{u}_{1}, \ldots, \vec{u}_{n}\right\}$ of \mathbb{R}^{n}.
In this case, we say that B is an orthonormal basis for W.
Example (Continued). In \mathbb{R}^{4}, the set of orthogonal vectors

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
3
\end{array}\right],
$$

can be made into an orthonormal set by scaling each vector by the reciprocal of it length:

$$
\vec{v}_{1}=\frac{\vec{u}_{1}}{\left\|\vec{u}_{1}\right\|}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2} \\
0 \\
0
\end{array}\right], \vec{v}_{2}=\frac{\vec{u}_{2}}{\left\|\vec{u}_{2}\right\|}=\left[\begin{array}{c}
2 / \sqrt{10} \\
-2 / \sqrt{10} \\
1 / \sqrt{10} \\
-1 / \sqrt{10}
\end{array}\right], \vec{v}_{3}=\frac{\vec{u}_{3}}{\left\|\vec{u}_{3}\right\|}=\left[\begin{array}{c}
0 \\
0 \\
3 / \sqrt{18} \\
-3 / \sqrt{18}
\end{array}\right]
$$

Then $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ is an orthonormal basis for $\operatorname{Span}\left\{\vec{u}_{1}, \vec{u}_{2}, \vec{u}_{3}\right\}$.
[There is a way to take any basis of a subspace and convert it into an orthonormal basis. This way is called the Gram-Schmidt process that we will learn in a future lecture.]
Orthogonality of a basis for a subspace means that computing the coordinates of any vector in that subspace can be done using only inner products.

Theorem 5. Let $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ be an orthogonal basis for a subspace W of \mathbb{R}^{n}. For each \vec{y} in W, the unique weights in the linear combination

$$
\vec{y}=c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+\cdots+c_{p} \vec{u}_{p}
$$

are given by

$$
c_{j}=\frac{\vec{y} \cdot \vec{u}_{j}}{\vec{u}_{j} \cdot \vec{u}_{j}}, j=1,2, \ldots, p .
$$

Proof. We make use of the orthogonality of the basis for W when we compute

$$
\vec{y} \cdot \vec{v}_{j}=c_{1} \vec{u}_{1} \cdot \vec{v}_{j}+\cdots+c_{j} \vec{u}_{j} \cdot \vec{u}_{j}+\cdots+c_{p} \vec{u}_{p} \cdot \vec{v}_{j}=c_{j} \vec{u}_{j} \cdot \vec{u}_{j} .
$$

Since $\left\{\vec{u}_{1}, \ldots, \vec{u}_{p}\right\}$ is a basis, the vector $\vec{u}_{j} \neq 0$, so that $\vec{u}_{j} \cdot \vec{u}_{j}=\left\|\vec{u}_{j}\right\| \neq 0$.
Solving for c_{j} gives the desired formula.
Example. Express

$$
\vec{y}=\left[\begin{array}{c}
5 \\
-3 \\
11 \\
7
\end{array}\right]
$$

as a linear combination of the orthogonal set of vectors

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
3
\end{array}\right] .
$$

We compute the weights by inner products:

$$
c_{1}=\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}}=\frac{2}{2}=1, c_{2}=\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}}=\frac{20}{10}=2, c_{3}=\frac{\vec{y} \cdot \vec{u}_{3}}{\vec{u}_{3} \cdot \vec{u}_{3}}=\frac{54}{18}=3 .
$$

We can indeed verify this by computing $c_{1} \vec{u}_{1}+c_{2} \vec{u}_{2}+c_{3} \vec{u}_{3}$ to see if it equals \vec{y}.

An Orthogonal Projection. Let \vec{u} be a nonzero vector in \mathbb{R}^{n}.
We would like to write a vector \vec{y} in \mathbb{R}^{n} as $\vec{y}=\vec{p}+\vec{z}$ where \vec{p} is in the direction of \vec{u} and \vec{z} is orthogonal to \vec{p}.

The vector \vec{p} is a scalar multiple of \vec{u} : there is a scalar α such that $\vec{p}=\alpha \vec{u}$.
With the vector $\vec{z}=\vec{y}-\vec{p}=\vec{y}-\alpha \vec{u}$ being orthogonal to \vec{u}, we have

$$
0=(\vec{y}-\alpha \vec{u}) \cdot \vec{u}=\vec{y} \cdot \vec{u}-\alpha \vec{u} \cdot \vec{u} .
$$

Since $\vec{u} \neq 0$, we have $\vec{u} \cdot \vec{u}=\|\vec{u}\|^{2} \neq 0$, so that we can solve for α getting

$$
\alpha=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} .
$$

Having the value of α, we then have

$$
\vec{p}=\alpha \vec{u}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

This vector \vec{p} is the orthogonal projection of \vec{y} onto the subspace L spanned by \vec{u}, and is denoted by

$$
\operatorname{proj}_{L} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

We illustrate this situation in \mathbb{R}^{2} : the black colored vector (the one pointing more right than up) is \vec{u}, the blue colored vector (the one pointing more up than right) is \vec{y}, and the the green colored on (pointing more up than left) is $\vec{z}=\vec{u}-\vec{p}$.

More on Orthonormal Sets. Notice that the formula for a projection simplifies if \vec{u} is a unit vector, and notice also that the formula for the weights in Theorem 5 also simplify when the orthogonal set is an orthonormal set.
If we form a matrix U from columns vectors, we can detect if the columns form an orthonormal set by computing a certain matrix product.

Theorem 6. An $m \times n$ matrix U has orthonormal columns if and only if $U^{T} U=I$.
Proof. When we write $U=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{n}\end{array}\right]$ we have

$$
U^{T} U=\left[\begin{array}{c}
\vec{u}_{1}^{T} \\
\vec{u}_{2}^{T} \\
\vdots \\
\vec{u}_{n}^{T}
\end{array}\right]\left[\begin{array}{llll}
\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{n}
\end{array}\right]=\left[\begin{array}{cccc}
\vec{u}_{1}^{T} \vec{u}_{1} & \vec{u}_{1}^{T} \vec{u}_{2} & \cdots & \vec{u}_{1}^{T} \vec{u}_{n} \\
\vec{u}_{2}^{T} \vec{u}_{1} & \vec{u}_{2}^{T} \vec{u}_{2} & \cdots & \vec{u}_{2}^{T} \vec{u}_{n} \\
\vdots & \vdots & \ddots & \vdots \\
\vec{u}_{n}^{T} \vec{u}_{1} & \vec{u}_{n}^{T} \vec{u}_{2} & \cdots & \vec{u}_{n}^{T} \vec{u}_{n}
\end{array}\right] .
$$

We recognize that each entry of $U^{T} U$ is an inner product of two of the vector $\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{v}_{n}$. When the set $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set, then $U^{T} U=I$.
On the other hand, if $U^{T} U=I$, then $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right\}$ is an orthonormal set.

