
Math 313 Lecture #27
§6.3: Orthogonal Projections

Recall the formula for the orthogonal projection of a ~y in Rn onto a one dimensional
subspace L with basis vector ~u:

projL~y =
~y · ~u
~u · ~u

~u.

We extend this to the orthogonal projection of ~y onto a subspace W to get a unique
vector ~p in W such that ~y − ~p is orthogonal to W . [Draw the picture in R3.]

With an orthogonal basis for W , the formula for ~p extend that for the orthogonal pro-
jection onto a L.

Theorem 8 (The Orthogonal Decomposition Theorem). Let W be a subspace of Rn.
Then each ~y in Rn can be written uniquely in the form

~y = ~p + ~z,

where ~y is in W and ~z is in W⊥. Additionally, if {~u1, ~u2, . . . , ~up} is an orthogonal basis
for W , then

~p =

p∑
i=1

~y · ~ui

~ui · ~ui

~ui

and ~z = ~y − ~p.

Proof. The projection ~p is in W and so it is a unique linear combination of an orthogonal
basis {~u1, ~u2, . . . , ~up} of W by Theorem 5:

~p =

p∑
i=1

~y · ~ui

~ui · ~ui

~ui.

Set ~z = ~y − ~p.

Since ~u1 is orthogonal to ~u2, . . . , ~up, we have that

~z · ~u1 = (~y − ~p) · u1 = ~y · ~u1 −
n∑

i=1

(
~y · ~ui

~ui · ~ui

~ui

)
· ~u1 = ~y · ~u1 − ~y · ~u1 = 0.

Similarly, we obtain ~z · ~uj = 0 for all j = 2, . . . , p.

Thus ~z is orthogonal to a spanning set of W , and so ~z belongs to W⊥.

To get uniqueness of the decomposition ~y = ~p + ~z, we suppose there is another decom-
position ~y = ~q + ~w with ~q ∈ W and ~w ∈ W⊥.

Since both decompositions equal ~y, we have that ~p− ~q = ~w − ~z.

Here ~p− ~q is in W while ~w − ~z is in W⊥.

You have it as a homework problem (#31 in §6.1) that there is only one vector that is
in both W and W⊥, namely ~0.

Thus ~p− ~q = ~0 and ~w − ~z = 0, giving the uniqueness. �



Example. Find the orthogonal projection of

~y =


1
3
0
6


onto the subspace W with orthogonal basis

~u1 =


1
1
0
0

 , ~u2 =


2
−2
1
−1

 , ~u3 =


0
0
3
3

 .

We apply the formula from Theorem 8:

~p =
~y · ~u1

~u1 · ~u1

~u1 +
~y · ~u2

~u2 · ~u2

~u2 +
~y · ~u3

~u3 · ~u3

~u3

=
4

2
~u1 −

10

10
~u2 +

18

18
~u3

=


0
4
2
4

 .

How can we check this answer? Well, the difference

~z = ~y − ~p =


1
−1
−2
2


is supposedly in W⊥, and we can check that ~z is orthogonal to each basis vector of W .

Properties of Orthogonal Projections. We write projW~y for the orthogonal pro-
jection of ~y onto the subspace W .

If ~y is in W , then projW~y = ~y.

If ~y 6∈ W , then projW~y is the best approximation of ~y by vectors in W , in the following
sense.

Theorem 9 (The Best Approximation Theorem). For ~y in Rn and W a subspace of Rn,
the projection ~p = profW~y is the closet point on W to ~y, i.e.,

‖~y − ~p‖ < ‖~y − ~v‖

for all ~v is W distinct from ~p.

Proof. Let ~v be a vector in W different from ~p.



Because ~v and ~p belong to the subspace, so does ~p− ~v.

This means that ~p− ~v is orthogonal to ~y − ~p. [Draw the picture.]

We can write
~y − ~v = (~y − ~p) + (~p− ~v).

The three vectors here are the sides of a right-angle triangle with ~y−~v as the hypothenuse.

The Pythagorean Theorem gives

‖~y − ~v‖2 = ‖y − ~p‖2 + ‖~p− ~v‖2.

Since ~v 6= ~p, we have ‖~v − ~p‖ > 0, and the Pythagorean Theorem becomes

‖~y − ~v‖2 > ‖~y − ~p‖2.

Taking square roots give the result. �

We call the vector ~p in Theorem 9 the best approximation to ~y by elements of W .

If we think of ‖~y − ~v‖ as the error of using ~v in place of ~y, then the error is minimized
when ~v = ~p.

Since the norm of a vector is determined by a sum of squares, we say that ‖~y − ~p‖ has
the “least squares” error.

Example (Continued). The vector

~p =


0
4
2
4


in the subspace W with orthogonal basis

~u1 =


1
1
0
0

 , ~u2 =


2
−2
1
−1

 , ~u3 =


0
0
3
3


is the best approximation of

~y =


1
3
0
6


by elements of W .

The error associated with the best approximation ~p is

‖~y − ~p‖ = ‖
[
1 −1 −2 2

]T ‖ =
√

10.

For all ~v in W different from ~p the error ‖~y − ~v‖ >
√

10. / / / /



We are seeing how useful an orthogonal basis is for computations.

What is even better than an orthogonal basis? An orthonormal basis!

Theorem 10. If {~u1, ~u2, . . . , ~up} is an orthonormal basis of a subspace W of Rn, then
for all ~y in Rn, we have

projW~y =

p∑
i=1

(
~y · ~ui

)
~ui.

Furthermore, if we set U =
[
~u1 ~u2 · · · ~up

]
, then

projW~y = UUT~y.

Proof. Because {~u1, ~u2, · · · , ~up} is an orthogonal basis we have by Theorem 8 that

projW~y =

p∑
i=1

~y · ~ui

~ui · ~ui

~ui.

This simplifies to the desired formula because ~ui · ~ui = 1 for all i = 1, 2, . . . , p.

The vector projW~y is linear combination of the columns of U where the weights are
~y · ~ui = ~uT

i ~y.

The weights are the entries of UT~y, and so the formula for projW~y becomes UUT~y. �


