Math 313 Lecture \#27
 §6.3: Orthogonal Projections

Recall the formula for the orthogonal projection of a \vec{y} in \mathbb{R}^{n} onto a one dimensional subspace L with basis vector \vec{u} :

$$
\operatorname{proj}_{L} \vec{y}=\frac{\vec{y} \cdot \vec{u}}{\vec{u} \cdot \vec{u}} \vec{u} .
$$

We extend this to the orthogonal projection of \vec{y} onto a subspace W to get a unique vector \vec{p} in W such that $\vec{y}-\vec{p}$ is orthogonal to W. [Draw the picture in \mathbb{R}^{3}.]
With an orthogonal basis for W, the formula for \vec{p} extend that for the orthogonal projection onto a L.
Theorem 8 (The Orthogonal Decomposition Theorem). Let W be a subspace of \mathbb{R}^{n}. Then each \vec{y} in \mathbb{R}^{n} can be written uniquely in the form

$$
\vec{y}=\vec{p}+\vec{z},
$$

where \vec{y} is in W and \vec{z} is in W^{\perp}. Additionally, if $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ is an orthogonal basis for W, then

$$
\vec{p}=\sum_{i=1}^{p} \frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} \vec{u}_{i}
$$

and $\vec{z}=\vec{y}-\vec{p}$.
Proof. The projection \vec{p} is in W and so it is a unique linear combination of an orthogonal basis $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ of W by Theorem 5:

$$
\vec{p}=\sum_{i=1}^{p} \frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} \vec{u}_{i} .
$$

Set $\vec{z}=\vec{y}-\vec{p}$.
Since \vec{u}_{1} is orthogonal to $\vec{u}_{2}, \ldots, \vec{u}_{p}$, we have that

$$
\vec{z} \cdot \vec{u}_{1}=(\vec{y}-\vec{p}) \cdot u_{1}=\vec{y} \cdot \vec{u}_{1}-\sum_{i=1}^{n}\left(\frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} \vec{u}_{i}\right) \cdot \vec{u}_{1}=\vec{y} \cdot \vec{u}_{1}-\vec{y} \cdot \vec{u}_{1}=0 .
$$

Similarly, we obtain $\vec{z} \cdot \vec{u}_{j}=0$ for all $j=2, \ldots, p$.
Thus \vec{z} is orthogonal to a spanning set of W, and so \vec{z} belongs to W^{\perp}.
To get uniqueness of the decomposition $\vec{y}=\vec{p}+\vec{z}$, we suppose there is another decomposition $\vec{y}=\vec{q}+\vec{w}$ with $\vec{q} \in W$ and $\vec{w} \in W^{\perp}$.
Since both decompositions equal \vec{y}, we have that $\vec{p}-\vec{q}=\vec{w}-\vec{z}$.
Here $\vec{p}-\vec{q}$ is in W while $\vec{w}-\vec{z}$ is in W^{\perp}.
You have it as a homework problem ($\# 31$ in $\S 6.1$) that there is only one vector that is in both W and W^{\perp}, namely $\overrightarrow{0}$.
Thus $\vec{p}-\vec{q}=\overrightarrow{0}$ and $\vec{w}-\vec{z}=0$, giving the uniqueness.

Example. Find the orthogonal projection of

$$
\vec{y}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
6
\end{array}\right]
$$

onto the subspace W with orthogonal basis

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
3
\end{array}\right] .
$$

We apply the formula from Theorem 8:

$$
\begin{aligned}
\vec{p} & =\frac{\vec{y} \cdot \vec{u}_{1}}{\vec{u}_{1} \cdot \vec{u}_{1}} \vec{u}_{1}+\frac{\vec{y} \cdot \vec{u}_{2}}{\vec{u}_{2} \cdot \vec{u}_{2}} \vec{u}_{2}+\frac{\vec{y} \cdot \vec{u}_{3}}{\vec{u}_{3} \cdot \vec{u}_{3}} \vec{u}_{3} \\
& =\frac{4}{2} \vec{u}_{1}-\frac{10}{10} \vec{u}_{2}+\frac{18}{18} \vec{u}_{3} \\
& =\left[\begin{array}{l}
0 \\
4 \\
2 \\
4
\end{array}\right] .
\end{aligned}
$$

How can we check this answer? Well, the difference

$$
\vec{z}=\vec{y}-\vec{p}=\left[\begin{array}{c}
1 \\
-1 \\
-2 \\
2
\end{array}\right]
$$

is supposedly in W^{\perp}, and we can check that \vec{z} is orthogonal to each basis vector of W. Properties of Orthogonal Projections. We write $\operatorname{proj}_{W} \vec{y}$ for the orthogonal projection of \vec{y} onto the subspace W.
If \vec{y} is in W, then $\operatorname{proj}_{W} \vec{y}=\vec{y}$.
If $\vec{y} \notin W$, then $\operatorname{proj}_{W} \vec{y}$ is the best approximation of \vec{y} by vectors in W, in the following sense.
Theorem 9 (The Best Approximation Theorem). For \vec{y} in \mathbb{R}^{n} and W a subspace of \mathbb{R}^{n}, the projection $\vec{p}=\operatorname{prof}_{W} \vec{y}$ is the closet point on W to \vec{y}, i.e.,

$$
\|\vec{y}-\vec{p}\|<\|\vec{y}-\vec{v}\|
$$

for all \vec{v} is W distinct from \vec{p}.
Proof. Let \vec{v} be a vector in W different from \vec{p}.

Because \vec{v} and \vec{p} belong to the subspace, so does $\vec{p}-\vec{v}$.
This means that $\vec{p}-\vec{v}$ is orthogonal to $\vec{y}-\vec{p}$. [Draw the picture.]
We can write

$$
\vec{y}-\vec{v}=(\vec{y}-\vec{p})+(\vec{p}-\vec{v}) .
$$

The three vectors here are the sides of a right-angle triangle with $\vec{y}-\vec{v}$ as the hypothenuse.
The Pythagorean Theorem gives

$$
\|\vec{y}-\vec{v}\|^{2}=\|y-\vec{p}\|^{2}+\|\vec{p}-\vec{v}\|^{2} .
$$

Since $\vec{v} \neq \vec{p}$, we have $\|\vec{v}-\vec{p}\|>0$, and the Pythagorean Theorem becomes

$$
\|\vec{y}-\vec{v}\|^{2}>\|\vec{y}-\vec{p}\|^{2} .
$$

Taking square roots give the result.
We call the vector \vec{p} in Theorem 9 the best approximation to \vec{y} by elements of W. If we think of $\|\vec{y}-\vec{v}\|$ as the error of using \vec{v} in place of \vec{y}, then the error is minimized when $\vec{v}=\vec{p}$.

Since the norm of a vector is determined by a sum of squares, we say that $\|\vec{y}-\vec{p}\|$ has the "least squares" error.
Example (Continued). The vector

$$
\vec{p}=\left[\begin{array}{l}
0 \\
4 \\
2 \\
4
\end{array}\right]
$$

in the subspace W with orthogonal basis

$$
\vec{u}_{1}=\left[\begin{array}{l}
1 \\
1 \\
0 \\
0
\end{array}\right], \vec{u}_{2}=\left[\begin{array}{c}
2 \\
-2 \\
1 \\
-1
\end{array}\right], \vec{u}_{3}=\left[\begin{array}{l}
0 \\
0 \\
3 \\
3
\end{array}\right]
$$

is the best approximation of

$$
\vec{y}=\left[\begin{array}{l}
1 \\
3 \\
0 \\
6
\end{array}\right]
$$

by elements of W.
The error associated with the best approximation \vec{p} is

$$
\|\vec{y}-\vec{p}\|=\left\|\left[\begin{array}{llll}
1 & -1 & -2 & 2
\end{array}\right]^{T}\right\|=\sqrt{10}
$$

For all \vec{v} in W different from \vec{p} the error $\|\vec{y}-\vec{v}\|>\sqrt{10}$.

We are seeing how useful an orthogonal basis is for computations.
What is even better than an orthogonal basis? An orthonormal basis!
Theorem 10. If $\left\{\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{p}\right\}$ is an orthonormal basis of a subspace W of \mathbb{R}^{n}, then for all \vec{y} in \mathbb{R}^{n}, we have

$$
\operatorname{proj}_{W} \vec{y}=\sum_{i=1}^{p}\left(\vec{y} \cdot \vec{u}_{i}\right) \vec{u}_{i} .
$$

Furthermore, if we set $U=\left[\begin{array}{llll}\vec{u}_{1} & \vec{u}_{2} & \cdots & \vec{u}_{p}\end{array}\right]$, then

$$
\operatorname{proj}_{W} \vec{y}=U U^{T} \vec{y} .
$$

Proof. Because $\left\{\vec{u}_{1}, \vec{u}_{2}, \cdots, \vec{u}_{p}\right\}$ is an orthogonal basis we have by Theorem 8 that

$$
\operatorname{proj}_{W} \vec{y}=\sum_{i=1}^{p} \frac{\vec{y} \cdot \vec{u}_{i}}{\vec{u}_{i} \cdot \vec{u}_{i}} \vec{u}_{i} .
$$

This simplifies to the desired formula because $\vec{u}_{i} \cdot \vec{u}_{i}=1$ for all $i=1,2, \ldots, p$.
The vector $\operatorname{proj}_{W} \vec{y}$ is linear combination of the columns of U where the weights are $\vec{y} \cdot \vec{u}_{i}=\vec{u}_{i}^{T} \vec{y}$.
The weights are the entries of $U^{T} \vec{y}$, and so the formula for $\operatorname{proj}_{W} \vec{y}$ becomes $U U^{T} \vec{y}$.

