Math 313 Lecture \#28
 §6.4: The Gram-Schmidt Process

We have seen that many computations in linear algebra can be accomplished by the inner product when we have an orthogonal basis for a vector space.

With the the use of the orthogonal projection onto a subspace, we can obtain an orthogonal basis from a given basis.
Example. Let W be the three dimensional subspace of \mathbb{R}^{4} with the basis

$$
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \vec{x}_{2}=\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right], \vec{x}_{3}=\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]
$$

We seek an orthogonal basis $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ for W.
Step 1 . We start by taking $\vec{v}_{1}=\vec{x}_{1}$, for which $\operatorname{Span}\left\{\vec{v}_{1}\right\}=\operatorname{Span}\left\{\vec{x}_{1}\right\}$.
Step 2. We want to find \vec{v}_{2} such that $\vec{v}_{2} \perp \vec{v}_{1}$ and $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}=\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$.
The orthogonal projection of \vec{x}_{2} onto the subspace $\operatorname{Span}\left\{\vec{v}_{1}\right\}$ is

$$
\vec{p}_{1}=\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}=\frac{6}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
3 / 2 \\
3 / 2 \\
3 / 2 \\
3 / 2
\end{array}\right] .
$$

The vector

$$
\vec{v}_{2}=\vec{x}_{2}-\vec{p}_{1}=\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right]-\left[\begin{array}{l}
3 / 2 \\
3 / 2 \\
3 / 2 \\
3 / 2
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right]
$$

belongs to $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ and is orthogonal to \vec{v}_{1}.
How do we check \vec{v}_{2} ? It is orthogonal to \vec{v}_{1} ? Yes it is.
Step 3. We want to find \vec{v}_{3} such that \vec{v}_{3} is orthogonal to $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ and $W=$ $\left.\overline{\operatorname{Span}\{ } \vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$.

The orthogonal projection of \vec{x}_{3} onto the subspace $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$ is

$$
\vec{p}_{2}=\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}+\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}=\frac{4}{4}\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\frac{10}{25}\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 . / 2 \\
5 / 2
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]-\left[\begin{array}{c}
-1 \\
1 \\
1 \\
-1
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right] .
$$

The vector

$$
\vec{v}_{3}=\vec{x}_{3}-\vec{p}_{2}=\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
2 \\
-2
\end{array}\right]
$$

belongs to $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ and belongs to the orthogonal complement of $\operatorname{Span}\left\{\vec{v}_{1}, \vec{v}_{2}\right\}$. How do we check \vec{v}_{3} ? Is it orthogonal to both \vec{v}_{1} and \vec{v}_{2} ? Yes it is.
Thus an orthogonal basis for W is the set containing the vectors

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right], \vec{v}_{2}=\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
2 \\
-2 \\
2 \\
-2
\end{array}\right] .
$$

If there were more than 3 basis vectors given, we could continue this process to obtain an orthogonal basis.
Theorem 11 (The Gram-Schmidt Process). Let $\left\{\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{p}\right\}$ be a basis for a nonzero subspace W of \mathbb{R}^{n}. The vectors

$$
\begin{aligned}
& \vec{v}_{1}=\vec{x}_{1}, \\
& \vec{v}_{2}=\vec{x}_{2}-\frac{\vec{x}_{2} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1} \\
& \vec{v}_{3}=\vec{x}_{3}-\frac{\vec{x}_{3} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{3} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2} \\
& \vdots \\
& \vec{v}_{p}=\vec{x}_{p}-\frac{\vec{x}_{p} \cdot \vec{v}_{1}}{\vec{v}_{1} \cdot \vec{v}_{1}} \vec{v}_{1}-\frac{\vec{x}_{p} \cdot \vec{v}_{2}}{\vec{v}_{2} \cdot \vec{v}_{2}} \vec{v}_{2}-\cdots-\frac{\vec{x}_{p} \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1},
\end{aligned}
$$

form an orthogonal basis for W where for each $k=1, \ldots, p$ we have

$$
\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}=\operatorname{Span}\left\{\vec{x}_{1}, \ldots, \vec{x}_{k}\right\}
$$

Even better than an orthogonal basis is an orthonormal basis.
A simple adjustment to the Gram-Schmidt process gives an orthonormal basis.
Example. We look at the same three vectors we started the first example with, but write them as the columns of

$$
A=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & -2 \\
1 & 4 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

The columns of A are linearly independent and therefore they form a basis for the column space of A.
We adapt the Gram-Schmidt process to the columns $\vec{a}_{1}, \vec{a}_{2}, \vec{a}_{3}$ of A to obtain an orthonormal basis $\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}$ of the column space of A.
With $r_{11}=\left\|\vec{a}_{1}\right\|=\sqrt{1^{2}+1^{2}+1^{2}+1^{2}}=2$, we have

$$
\vec{q}_{1}=\frac{\vec{a}_{1}}{\left\|\vec{a}_{1}\right\|}=\frac{\vec{a}_{1}}{r_{11}}=\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]
$$

With $r_{12}=\vec{a}_{2} \cdot \vec{q}_{1}=3$, the projection of \vec{a}_{2} onto $\operatorname{Span}\left\{\vec{q}_{1}\right\}=\operatorname{Span}\left\{\vec{a}_{1}\right\}$ is

$$
\vec{p}_{1}=\left(\vec{a}_{2} \cdot \vec{q}_{1}\right) \vec{q}_{1}=r_{12} \vec{q}_{1}=3 \vec{q}_{1} .
$$

The vector orthogonal to $\operatorname{Span}\left(\vec{q}_{1}\right)$ is

$$
\vec{a}_{2}-\vec{p}_{1}=\left[\begin{array}{c}
-1 \\
4 \\
4 \\
-1
\end{array}\right]-\left[\begin{array}{l}
3 / 2 \\
3 / 2 \\
3 / 2 \\
3 / 2
\end{array}\right]=\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right]
$$

With $r_{22}=\left\|\vec{a}_{2}-\vec{p}_{1}\right\|=5$, the second vector in the orthonormal basis is

$$
\vec{q}_{2}=\frac{\vec{a}_{2}-\vec{p}_{1}}{\left\|\vec{a}_{2}-\vec{p}_{1}\right\|}=\frac{\vec{a}_{2}-\vec{p}_{1}}{r_{22}}=\frac{1}{5}\left[\begin{array}{c}
-5 / 2 \\
5 / 2 \\
5 / 2 \\
-5 / 2
\end{array}\right]=\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] .
$$

With $r_{13}=\vec{a}_{3} \cdot \vec{q}_{1}=2$ and $r_{23}=\vec{a}_{3} \cdot \vec{q}_{2}=-2$, the projection of \vec{a}_{3} onto $\operatorname{Span}\left(\vec{q}_{1}, \vec{q}_{2}\right)$ is

$$
\begin{aligned}
\vec{p}_{2} & =\left(\vec{a}_{3} \cdot \vec{q}_{1}\right) \vec{q}_{1}+\left(\vec{a}_{3} \cdot \vec{q}_{2}\right) \vec{q}_{2} \\
& =r_{13} \vec{q}_{1}+r_{23} \vec{q}_{2} \\
& =2\left[\begin{array}{l}
1 / 2 \\
1 / 2 \\
1 / 2 \\
1 / 2
\end{array}\right]-2\left[\begin{array}{c}
-1 / 2 \\
1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right]=\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right] .
\end{aligned}
$$

The vector orthogonal to $\operatorname{Span}\left\{\vec{q}_{1}, \vec{q}_{2}\right\}$ is

$$
\vec{a}_{3}-\vec{p}_{2}=\left[\begin{array}{c}
4 \\
-2 \\
2 \\
0
\end{array}\right]-\left[\begin{array}{l}
2 \\
0 \\
0 \\
2
\end{array}\right]=\left[\begin{array}{c}
2 \\
-2 \\
2 \\
-2
\end{array}\right] .
$$

With $r_{33}=\left\|\vec{a}_{3}-\vec{p}_{2}\right\|=4$, the third and last unit vector in the orthonormal basis is

$$
\vec{q}_{3}=\frac{\vec{a}_{3}-\vec{p}_{2}}{\left\|\vec{a}_{3}-\vec{p}_{2}\right\|}=\frac{\vec{a}_{3}-\vec{p}_{2}}{r_{33}}=\left[\begin{array}{c}
1 / 2 \\
-1 / 2 \\
1 / 2 \\
-1 / 2
\end{array}\right] .
$$

You might not have noticed it, but we have been expressing A as a product of two matrices R and Q.
Define an upper triangular square matrix R by the inner products and norms $r_{i j}$:

$$
R=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
0 & r_{22} & r_{23} \\
0 & 0 & r_{33}
\end{array}\right]=\left[\begin{array}{ccc}
2 & 3 & 2 \\
0 & 5 & -2 \\
0 & 0 & 4
\end{array}\right] .
$$

This square matrix is invertible (and this always happens - why?).
Define a matrix Q by the orthonormal basis vectors $\vec{q}_{1}, \vec{q}_{1}, \vec{q}_{3}$ as its the columns:

$$
Q=\left(\vec{q}_{1}, \vec{q}_{2}, \vec{q}_{3}\right)=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right]
$$

The columns of Q form an orthonormal basis for the column space of A.
You might not be surprised that the product of Q with R is the original matrix A :

$$
Q R=\left[\begin{array}{ccc}
1 / 2 & -1 / 2 & 1 / 2 \\
1 / 2 & 1 / 2 & -1 / 2 \\
1 / 2 & 1 / 2 & 1 / 2 \\
1 / 2 & -1 / 2 & -1 / 2
\end{array}\right]\left[\begin{array}{ccc}
2 & 3 & 2 \\
0 & 5 & -2 \\
0 & 0 & 4
\end{array}\right]=\left[\begin{array}{ccc}
1 & -1 & 4 \\
1 & 4 & -2 \\
1 & 4 & 2 \\
1 & -1 & 0
\end{array}\right]
$$

This is called the $Q R$ factorization of A.
Theorem 11. If A is an $m \times n$ matrix with linearly independent columns, then there is an $m \times n$ matrix Q whose columns form an orthonormal set, and an invertible $n \times n$ upper triangular matrix R with positive numbers on its diagonal such that

$$
A=Q R .
$$

