
Math 313 Lecture #28
§6.4: The Gram-Schmidt Process

We have seen that many computations in linear algebra can be accomplished by the inner
product when we have an orthogonal basis for a vector space.

With the the use of the orthogonal projection onto a subspace, we can obtain an orthog-
onal basis from a given basis.

Example. Let W be the three dimensional subspace of R4 with the basis

~x1 =


1
1
1
1

 , ~x2 =


−1
4
4
−1

 , ~x3 =


4
−2
2
0

 .

We seek an orthogonal basis {~v1, ~v2, ~v3} for W .

Step 1. We start by taking ~v1 = ~x1, for which Span{~v1} = Span{~x1}.
Step 2. We want to find ~v2 such that ~v2 ⊥ ~v1 and Span{~v1, ~v2} = Span{~x1, ~x2}.
The orthogonal projection of ~x2 onto the subspace Span{~v1} is

~p1 =
~x2 · ~v1
~v1 · ~v1

~v1 =
6

4


1
1
1
1

 =


3/2
3/2
3/2
3/2

 .

The vector

~v2 = ~x2 − ~p1 =


−1
4
4
−1

−


3/2
3/2
3/2
3/2

 =


−5/2
5/2
5/2
−5/2


belongs to Span{~x1, ~x2} and is orthogonal to ~v1.

How do we check ~v2? It is orthogonal to ~v1? Yes it is.

Step 3. We want to find ~v3 such that ~v3 is orthogonal to Span{~v1, ~v2} and W =
Span{~v1, ~v2, ~v3}.
The orthogonal projection of ~x3 onto the subspace Span{~v1, ~v2} is

~p2 =
~x3 · ~v1
~v1 · ~v1

~v1 +
~x3 · ~v2
~v2 · ~v2

~v2 =
4

4


1
1
1
1

− 10

25


−5/2
5/2
5./2
5/2

 =


1
1
1
1

−

−1
1
1
−1

 =


2
0
0
2

 .

The vector

~v3 = ~x3 − ~p2 =


4
−2
2
0

−


2
0
0
2

 =


2
−2
2
−2





belongs to Span{~x1, ~x2, ~x3} and belongs to the orthogonal complement of Span{~v1, ~v2}.
How do we check ~v3? Is it orthogonal to both ~v1 and ~v2? Yes it is.

Thus an orthogonal basis for W is the set containing the vectors

~v1 =


1
1
1
1

 , ~v2 =


−5/2
5/2
5/2
−5/2

 , ~v3 =


2
−2
2
−2

 .

If there were more than 3 basis vectors given, we could continue this process to obtain
an orthogonal basis.

Theorem 11 (The Gram-Schmidt Process). Let {~x1, ~x2, . . . , ~xp} be a basis for a nonzero
subspace W of Rn. The vectors

~v1 = ~x1,

~v2 = ~x2 −
~x2 · ~v1
~v1 · ~v1

~v1,

~v3 = ~x3 −
~x3 · ~v1
~v1 · ~v1

~v1 −
~x3 · ~v2
~v2 · ~v2

~v2

...

~vp = ~xp −
~xp · ~v1
~v1 · ~v1

~v1 −
~xp · ~v2
~v2 · ~v2

~v2 − · · · −
~xp · ~vp−1

~vp−1 · ~vp−1

~vp−1,

form an orthogonal basis for W where for each k = 1, . . . , p we have

Span{~v1, . . . , ~vk} = Span{~x1, . . . , ~xk}.

Even better than an orthogonal basis is an orthonormal basis.

A simple adjustment to the Gram-Schmidt process gives an orthonormal basis.

Example. We look at the same three vectors we started the first example with, but
write them as the columns of

A =


1 −1 4
1 4 −2
1 4 2
1 −1 0

 .

The columns of A are linearly independent and therefore they form a basis for the column
space of A.

We adapt the Gram-Schmidt process to the columns ~a1,~a2,~a3 of A to obtain an orthonor-
mal basis ~q1, ~q2, ~q3 of the column space of A.

With r11 = ‖~a1‖ =
√

12 + 12 + 12 + 12 = 2, we have

~q1 =
~a1
‖~a1‖

=
~a1
r11

=


1/2
1/2
1/2
1/2

 .



With r12 = ~a2 · ~q1 = 3, the projection of ~a2 onto Span{~q1} = Span{~a1} is

~p1 = (~a2 · ~q1)~q1 = r12~q1 = 3~q1.

The vector orthogonal to Span(~q1) is

~a2 − ~p1 =


−1
4
4
−1

−


3/2
3/2
3/2
3/2

 =


−5/2
5/2
5/2
−5/2

 .

With r22 = ‖~a2 − ~p1‖ = 5, the second vector in the orthonormal basis is

~q2 =
~a2 − ~p1
‖~a2 − ~p1‖

=
~a2 − ~p1
r22

=
1

5


−5/2
5/2
5/2
−5/2

 =


−1/2
1/2
1/2
−1/2

 .

With r13 = ~a3 · ~q1 = 2 and r23 = ~a3 · ~q2 = −2, the projection of ~a3 onto Span(~q1, ~q2) is

~p2 = (~a3 · ~q1)~q1 + (~a3 · ~q2)~q2
= r13~q1 + r23~q2

= 2


1/2
1/2
1/2
1/2

− 2


−1/2
1/2
1/2
−1/2

 =


2
0
0
2

 .

The vector orthogonal to Span{~q1, ~q2} is

~a3 − ~p2 =


4
−2
2
0

−


2
0
0
2

 =


2
−2
2
−2

 .

With r33 = ‖~a3 − ~p2‖ = 4, the third and last unit vector in the orthonormal basis is

~q3 =
~a3 − ~p2
‖~a3 − ~p2‖

=
~a3 − ~p2
r33

=


1/2
−1/2
1/2
−1/2

 .

You might not have noticed it, but we have been expressing A as a product of two
matrices R and Q.

Define an upper triangular square matrix R by the inner products and norms rij:

R =

r11 r12 r13
0 r22 r23
0 0 r33

 =

2 3 2
0 5 −2
0 0 4

 .



This square matrix is invertible (and this always happens – why?).

Define a matrix Q by the orthonormal basis vectors ~q1, ~q1, ~q3 as its the columns:

Q = (~q1, ~q2, ~q3) =


1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2

 .

The columns of Q form an orthonormal basis for the column space of A.

You might not be surprised that the product of Q with R is the original matrix A:

QR =


1/2 −1/2 1/2
1/2 1/2 −1/2
1/2 1/2 1/2
1/2 −1/2 −1/2


2 3 2

0 5 −2
0 0 4

 =


1 −1 4
1 4 −2
1 4 2
1 −1 0

 .

This is called the QR factorization of A. �

Theorem 11. If A is an m × n matrix with linearly independent columns, then there
is an m× n matrix Q whose columns form an orthonormal set, and an invertible n× n
upper triangular matrix R with positive numbers on its diagonal such that

A = QR.


