Math 313 Lecture #28
§6.4: The Gram-Schmidt Process

We have seen that many computations in linear algebra can be accomplished by the inner
product when we have an orthogonal basis for a vector space.

With the the use of the orthogonal projection onto a subspace, we can obtain an orthog-
onal basis from a given basis.

Example. Let W be the three dimensional subspace of R* with the basis

1 -1 4
- 1 - 4 o —2
T = 11 2 = 4 3 3 = 2
1 -1 0

We seek an orthogonal basis {#), U, U3} for W.
Step 1. We start by taking v, = &, for which Span{¢}} = Span{,}.
Step 2. We want to find 9, such that v, L ¥ and Span{#;, o} = Span{¥y, Z>}.

The orthogonal projection of Z3 onto the subspace Span{v;} is

1 3/2

ﬁ_*g-ﬁlﬁ_6 1l |3/2
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1 3/2

The vector

—1 3/2 —5/2
T 4 _3/2: 5/2
L 3/2 5/2
-1 3/2 —5/2

belongs to Span{Z, ¥s} and is orthogonal to 7.
How do we check ©57 It is orthogonal to 717 Yes it is.

Step 3. We want to find ¢35 such that @3 is orthogonal to Span{?, v} and W =
Span{ﬁl, 172, ’173}

The orthogonal projection of Z3 onto the subspace Span{v;, v} is

1 —5/2 1 —1 2
L @30, T30, 4|1l 10| 5/2| |1 1| |0
= n TR w1 T s2 | T | T o
1 5/2 1 —1 2
The vector
4 2 2
R b S e e
2 0 2
0 2 —2



belongs to Span{#, ¥s, 3} and belongs to the orthogonal complement of Span{, Us}.
How do we check ¢37 Is it orthogonal to both ¢} and 5?7 Yes it is.

Thus an orthogonal basis for W is the set containing the vectors

1 52 2

o a2 |
1 1|’ 2 5/2 ,» U3 2)
1 _5/2 9

If there were more than 3 basis vectors given, we could continue this process to obtain
an orthogonal basis.

Theorem 11 (The Gram-Schmidt Process). Let {Z, Ty, ..., T,} be a basis for a nonzero
subspace W of R™. The vectors

V1 = 2y,
Vo = T2 — = i,
U1 - U1
L, T30, T3l
V3 =T3 — 55 V1 — o —5 U2
U101 V2 - Vg
L, Ty Ui, Ty Ua, Ty Tp1
Up:xp__,p = 1—qp ﬁUQ—"'—%Upflv
V1 -1 Vg - V2 Up—1 " Up—1
form an orthogonal basis for W where for each k = 1,...,p we have

Span{i, ..., Uk} = Span{Zy,..., Tk}
Even better than an orthogonal basis is an orthonormal basis.
A simple adjustment to the Gram-Schmidt process gives an orthonormal basis.

Example. We look at the same three vectors we started the first example with, but
write them as the columns of

1 -1 4
1 4 =2
A= 1 4 2
1 -1 0

The columns of A are linearly independent and therefore they form a basis for the column
space of A.

We adapt the Gram-Schmidt process to the columns @y, ds, @3 of A to obtain an orthonor-
mal basis ¢1, ¢, ¢3 of the column space of A.

With ry; = ||| = V12 + 12 + 12 + 12 = 2, we have
1/2
7= a _ dy 1/2
' ||| 11 1/2
1/2




With r15 = ds - ¢4 = 3, the projection of @y onto Span{q;} = Span{ad,} is
P = (672 : (fl)(jl = ri2¢i = 3q1.

The vector orthogonal to Span(q;) is

~171  [3/2 —5/2
LA 32| | 82
@TPhT oy 3/2| ~ | 5/2
—1| |32 —5/2
With ry9 = ||da — pi|| = 5, the second vector in the orthonormal basis is
“5/2]  [—1/2
L G—p1 _d—p1 1| 5/2| | 1/2
Q2 = 5 7 & =z =
Haz—Plﬂ 722 51 5/2 1/2
—5/2 ~1/2
With r13 = @3- ¢4 = 2 and 193 = @3 - o = —2, the projection of @3 onto Span(q, ¢3) is

po = (a3 - q1)q1 + (a3 - @2) ¢
= r13¢1 + 7230

1/2 “1/2]  [2
12| 2| o
1/2 1/2 0
1/2 12 |2
The vector orthogonal to Span{q, >} is
4 2 2
L |=2| o] |-
@B = 19 0| ~ |2
0 2 —2

With rg3 = ||d3 — pa|| = 4, the third and last unit vector in the orthonormal basis is

1/2

G = dy—pPa _ G3—pa  |—1/2
3 — — — - -

||a3 - p2|| 33 1/2

—1/2

You might not have noticed it, but we have been expressing A as a product of two
matrices R and Q).

Define an upper triangular square matrix R by the inner products and norms r;;:
T T2 T13 2

2 3
R = 0 T9g To3| = 0 5 =2
0 0 33 0 0 4



This square matrix is invertible (and this always happens — why?).

Define a matrix () by the orthonormal basis vectors ¢i, ¢1, ¢3 as its the columns:

1/2
1/2
1/2
1/2

~1/2  1/2
12 —1/2
12 1/2
~1/2 —1/2

The columns of @) form an orthonormal basis for the column space of A.

You might not be surprised that the product of ) with R is the original matrix A:

/2 -1/2 127 r,
12 1/2 —1/2

QF = /2 1/2  1/2 8
1/2 —1/2 —1/2

This is called the QR factorization of A.

- 1 -1 4
1 4 -2

5 —2| =

0 1 4 2
1 -1 0

0

Theorem 11. If A is an m x n matrix with linearly independent columns, then there
is an m X n matrix () whose columns form an orthonormal set, and an invertible n x n
upper triangular matrix R with positive numbers on its diagonal such that

A=QR.



