Math 313 Lecture #28 §6.4: The Gram-Schmidt Process

We have seen that many computations in linear algebra can be accomplished by the inner product when we have an orthogonal basis for a vector space.

With the use of the orthogonal projection onto a subspace, we can obtain an orthogonal basis from a given basis.

Example. Let W be the three dimensional subspace of \mathbb{R}^4 with the basis

$$\vec{x}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \vec{x}_2 = \begin{bmatrix} -1\\4\\4\\-1 \end{bmatrix}, \ \vec{x}_3 = \begin{bmatrix} 4\\-2\\2\\0 \end{bmatrix}.$$

We seek an orthogonal basis $\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}$ for W.

Step 1. We start by taking $\vec{v}_1 = \vec{x}_1$, for which $\text{Span}\{\vec{v}_1\} = \text{Span}\{\vec{x}_1\}$.

<u>Step 2</u>. We want to find \vec{v}_2 such that $\vec{v}_2 \perp \vec{v}_1$ and $\text{Span}\{\vec{v}_1, \vec{v}_2\} = \text{Span}\{\vec{x}_1, \vec{x}_2\}.$

The orthogonal projection of \vec{x}_2 onto the subspace $\text{Span}\{\vec{v}_1\}$ is

$$\vec{p}_1 = \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 = \frac{6}{4} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 3/2\\3/2\\3/2\\3/2 \end{bmatrix}.$$

The vector

$$\vec{v}_2 = \vec{x}_2 - \vec{p}_1 = \begin{bmatrix} -1\\4\\4\\-1 \end{bmatrix} - \begin{bmatrix} 3/2\\3/2\\3/2\\3/2 \end{bmatrix} = \begin{bmatrix} -5/2\\5/2\\5/2\\-5/2 \end{bmatrix}$$

belongs to $\text{Span}\{\vec{x}_1, \vec{x}_2\}$ and is orthogonal to \vec{v}_1 .

How do we check \vec{v}_2 ? It is orthogonal to \vec{v}_1 ? Yes it is.

Step 3. We want to find \vec{v}_3 such that \vec{v}_3 is orthogonal to $\text{Span}\{\vec{v}_1, \vec{v}_2\}$ and $W = \overline{\text{Span}\{\vec{v}_1, \vec{v}_2, \vec{v}_3\}}$.

The orthogonal projection of \vec{x}_3 onto the subspace $\text{Span}\{\vec{v}_1, \vec{v}_2\}$ is

$$\vec{p}_2 = \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 + \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 = \frac{4}{4} \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - \frac{10}{25} \begin{bmatrix} -5/2\\5/2\\5/2\\5/2 \end{bmatrix} = \begin{bmatrix} 1\\1\\1\\1\\1 \end{bmatrix} - \begin{bmatrix} -1\\1\\1\\1\\1 \end{bmatrix} = \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix}.$$

The vector

$$\vec{v}_3 = \vec{x}_3 - \vec{p}_2 = \begin{bmatrix} 4 \\ -2 \\ 2 \\ 0 \end{bmatrix} - \begin{bmatrix} 2 \\ 0 \\ 0 \\ 2 \end{bmatrix} = \begin{bmatrix} 2 \\ -2 \\ 2 \\ -2 \end{bmatrix}$$

belongs to $\text{Span}\{\vec{x}_1, \vec{x}_2, \vec{x}_3\}$ and belongs to the orthogonal complement of $\text{Span}\{\vec{v}_1, \vec{v}_2\}$. How do we check \vec{v}_3 ? Is it orthogonal to both \vec{v}_1 and \vec{v}_2 ? Yes it is.

Thus an orthogonal basis for W is the set containing the vectors

$$\vec{v}_1 = \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -5/2\\5/2\\5/2\\-5/2 \end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 2\\-2\\2\\-2\\-2 \end{bmatrix}.$$

If there were more than 3 basis vectors given, we could continue this process to obtain an orthogonal basis.

Theorem 11 (The Gram-Schmidt Process). Let $\{\vec{x}_1, \vec{x}_2, \ldots, \vec{x}_p\}$ be a basis for a nonzero subspace W of \mathbb{R}^n . The vectors

$$\begin{split} \vec{v}_1 &= \vec{x}_1, \\ \vec{v}_2 &= \vec{x}_2 - \frac{\vec{x}_2 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1, \\ \vec{v}_3 &= \vec{x}_3 - \frac{\vec{x}_3 \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_3 \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 \\ \vdots \\ \vec{v}_p &= \vec{x}_p - \frac{\vec{x}_p \cdot \vec{v}_1}{\vec{v}_1 \cdot \vec{v}_1} \vec{v}_1 - \frac{\vec{x}_p \cdot \vec{v}_2}{\vec{v}_2 \cdot \vec{v}_2} \vec{v}_2 - \dots - \frac{\vec{x}_p \cdot \vec{v}_{p-1}}{\vec{v}_{p-1} \cdot \vec{v}_{p-1}} \vec{v}_{p-1}. \end{split}$$

form an orthogonal basis for W where for each k = 1, ..., p we have

 $\operatorname{Span}\{\vec{v}_1,\ldots,\vec{v}_k\}=\operatorname{Span}\{\vec{x}_1,\ldots,\vec{x}_k\}.$

Even better than an orthogonal basis is an orthonormal basis.

A simple adjustment to the Gram-Schmidt process gives an orthonormal basis.

Example. We look at the same three vectors we started the first example with, but write them as the columns of

$$A = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}$$

The columns of A are linearly independent and therefore they form a basis for the column space of A.

We adapt the Gram-Schmidt process to the columns $\vec{a}_1, \vec{a}_2, \vec{a}_3$ of A to obtain an orthonormal basis $\vec{q}_1, \vec{q}_2, \vec{q}_3$ of the column space of A.

With $r_{11} = \|\vec{a}_1\| = \sqrt{1^2 + 1^2 + 1^2 + 1^2} = 2$, we have

$$\vec{q}_1 = \frac{\vec{a}_1}{\|\vec{a}_1\|} = \frac{\vec{a}_1}{r_{11}} = \begin{bmatrix} 1/2\\ 1/2\\ 1/2\\ 1/2\\ 1/2 \end{bmatrix}.$$

With $r_{12} = \vec{a}_2 \cdot \vec{q}_1 = 3$, the projection of \vec{a}_2 onto $\text{Span}\{\vec{q}_1\} = \text{Span}\{\vec{a}_1\}$ is

$$\vec{p}_1 = (\vec{a}_2 \cdot \vec{q}_1)\vec{q}_1 = r_{12}\vec{q}_1 = 3\vec{q}_1.$$

The vector orthogonal to $\text{Span}(\vec{q_1})$ is

$$\vec{a}_2 - \vec{p}_1 = \begin{bmatrix} -1\\4\\4\\-1 \end{bmatrix} - \begin{bmatrix} 3/2\\3/2\\3/2\\3/2 \end{bmatrix} = \begin{bmatrix} -5/2\\5/2\\5/2\\-5/2 \end{bmatrix}.$$

With $r_{22} = \|\vec{a}_2 - \vec{p}_1\| = 5$, the second vector in the orthonormal basis is

$$\vec{q}_2 = \frac{\vec{a}_2 - \vec{p}_1}{\|\vec{a}_2 - \vec{p}_1\|} = \frac{\vec{a}_2 - \vec{p}_1}{r_{22}} = \frac{1}{5} \begin{bmatrix} -5/2\\ 5/2\\ 5/2\\ -5/2 \end{bmatrix} = \begin{bmatrix} -1/2\\ 1/2\\ 1/2\\ -1/2 \end{bmatrix}.$$

With $r_{13} = \vec{a}_3 \cdot \vec{q}_1 = 2$ and $r_{23} = \vec{a}_3 \cdot \vec{q}_2 = -2$, the projection of \vec{a}_3 onto $\text{Span}(\vec{q}_1, \vec{q}_2)$ is

$$\vec{p}_{2} = (\vec{a}_{3} \cdot \vec{q}_{1})\vec{q}_{1} + (\vec{a}_{3} \cdot \vec{q}_{2})\vec{q}_{2}$$

$$= r_{13}\vec{q}_{1} + r_{23}\vec{q}_{2}$$

$$= 2 \begin{bmatrix} 1/2\\1/2\\1/2\\1/2\\1/2 \end{bmatrix} - 2 \begin{bmatrix} -1/2\\1/2\\1/2\\-1/2 \end{bmatrix} = \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix}$$

•

The vector orthogonal to $\text{Span}\{\vec{q_1}, \vec{q_2}\}$ is

$$\vec{a}_3 - \vec{p}_2 = \begin{bmatrix} 4\\-2\\2\\0 \end{bmatrix} - \begin{bmatrix} 2\\0\\0\\2 \end{bmatrix} = \begin{bmatrix} 2\\-2\\2\\-2 \end{bmatrix}.$$

With $r_{33} = \|\vec{a}_3 - \vec{p}_2\| = 4$, the third and last unit vector in the orthonormal basis is

$$\vec{q}_3 = \frac{\vec{a}_3 - \vec{p}_2}{\|\vec{a}_3 - \vec{p}_2\|} = \frac{\vec{a}_3 - \vec{p}_2}{r_{33}} = \begin{bmatrix} 1/2\\ -1/2\\ 1/2\\ 1/2\\ -1/2 \end{bmatrix}.$$

You might not have noticed it, but we have been expressing A as a product of two matrices R and Q.

Define an upper triangular square matrix R by the inner products and norms r_{ij} :

$$R = \begin{bmatrix} r_{11} & r_{12} & r_{13} \\ 0 & r_{22} & r_{23} \\ 0 & 0 & r_{33} \end{bmatrix} = \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix}.$$

This square matrix is invertible (and this always happens – why?).

Define a matrix Q by the orthonormal basis vectors $\vec{q_1}, \vec{q_1}, \vec{q_3}$ as its the columns:

$$Q = (\vec{q_1}, \vec{q_2}, \vec{q_3}) = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix}.$$

The columns of Q form an orthonormal basis for the column space of A.

You might not be surprised that the product of Q with R is the original matrix A:

$$QR = \begin{bmatrix} 1/2 & -1/2 & 1/2 \\ 1/2 & 1/2 & -1/2 \\ 1/2 & 1/2 & 1/2 \\ 1/2 & -1/2 & -1/2 \end{bmatrix} \begin{bmatrix} 2 & 3 & 2 \\ 0 & 5 & -2 \\ 0 & 0 & 4 \end{bmatrix} = \begin{bmatrix} 1 & -1 & 4 \\ 1 & 4 & -2 \\ 1 & 4 & 2 \\ 1 & -1 & 0 \end{bmatrix}.$$

This is called the QR factorization of A.

Theorem 11. If A is an $m \times n$ matrix with linearly independent columns, then there is an $m \times n$ matrix Q whose columns form an orthonormal set, and an invertible $n \times n$ upper triangular matrix R with positive numbers on its diagonal such that

$$A = QR.$$