Math 313 Lecture #33 §7.4: The Singular Value Decomposition

We have seen the usefulness of the orthogonal diagonalization of symmetric (square) matrices: $A = PDP^{T}$.

Is there something similar for non-square matrices? Yes there is.

A Motivating Example. Consider the factorization of the following 3×2 matrix:

$$A = \begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} & 0 \\ 1/\sqrt{2} & -1/\sqrt{2} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}.$$

We have factored A as a product

$$A = U\Sigma V^T$$

where U is a 3×3 orthogonal matrix, Σ is a 3×2 matrix whose off diagonal entries are zero, and V is a 2×2 orthogonal matrix.

Can any $m \times n$ matrix A alway be factored as $U\Sigma V^T$?

Theorem 10. For each $A \in \mathbb{R}^{m \times n}$, there exists an orthogonal $m \times m$ matrix U, an $m \times n$ matrix Σ whose off-diagonal entries are all zero and whose diagonal entries satisfy $\sigma_1 \geq \sigma_2 \geq \cdots \geq \sigma_n \geq 0$, and an orthogonal $n \times n$ matrix V such that $A = U \Sigma V^T$.

The product $A = U\Sigma V^T$ is called a **singular value decomposition** of A, and the nonnegative diagonal entries σ_i of Σ are called the **singular values** of A.

Example. Find a singular value decomposition of

$$A = \begin{bmatrix} 1 & 0\\ 2 & 2\\ 0 & 1 \end{bmatrix}.$$

Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

$$A^{T}A = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$

The eigenvalues and unit eigenvectors of $A^T A$ are

$$\lambda_1 = 9, \ \vec{v}_1 = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}, \ \lambda_2 = 1, \ \vec{v}_2 = \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}.$$

Fact: the eigenvalues of $A^T A$ are always real and nonnegative because $A^T A \vec{x} = \lambda \vec{x}$ for $\vec{x} \neq 0$ implies

$$||A\vec{x}||^2 = \vec{x}^T A^T A\vec{x} = \lambda \vec{x}^T \vec{x} = \lambda ||\vec{x}||^2.$$

We have already ordered the eigenvalues in decreasing order.

Since these eigenvectors are orthogonal (they belong to distinct eigenvalues of an symmetric matrix), we have

$$V = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}.$$

<u>Step 2</u>. The singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 3$ and $\sigma_2 = \sqrt{\lambda_2} = 1$, and so

$$\Sigma = \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Fact: The number of nonzero singular values of A is the rank of A.

Observe that the rank of A is 2 and that A has 2 nonzero singular values.

Step 3. Each nonzero singular value determines a column of U (but not necessarily all of the columns of U).

Since $A = U\Sigma V^T$ and V is orthogonal, we have $AV = U\Sigma$. Passing to the columns of this, we have

$$A\vec{v}_i = \sigma_i \vec{u}_i,$$

which can be solved for \vec{u}_i when $\sigma_i \neq 0$.

Since we have two nonzero singular values, the first two columns of U are

$$\vec{u}_{1} = \frac{A\vec{v}_{1}}{\sigma_{1}} = \frac{1}{3} \begin{bmatrix} 1 & 0\\ 2 & 2\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2}\\ 1/\sqrt{2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1/\sqrt{2}\\ 4/\sqrt{2}\\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/3\sqrt{2}\\ 4/3\sqrt{2}\\ 1/3\sqrt{2} \end{bmatrix},$$
$$\vec{u}_{2} = \frac{A\vec{v}_{2}}{\sigma_{2}} = \frac{1}{1} \begin{bmatrix} 1 & 0\\ 2 & 2\\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/\sqrt{2}\\ 1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} -1/\sqrt{2}\\ 0\\ 1/\sqrt{2} \end{bmatrix}.$$

Those columns of U determined by the nonzero singular values belong to $\operatorname{Col}(A)$. The remainder of the columns of U are an orthonormal basis for $(\operatorname{Col} A)^{\perp} = \operatorname{Nul}(A^T)$.

Here, the third (and last) column of U is a unit basis vector for $Nul(A^T)$:

$$A^{T} = \begin{bmatrix} 1 & 2 & 0 \\ 0 & 2 & 1 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 1/2 \end{bmatrix} \Rightarrow \vec{u}_{3} = \begin{bmatrix} 2/3 \\ -1/3 \\ 2/3 \end{bmatrix}.$$

Then

$$U = \begin{bmatrix} 1/3\sqrt{2} & -1/\sqrt{2} & 2/3\\ 4/3\sqrt{2} & 0 & -1/3\\ 1/3\sqrt{2} & 1/\sqrt{2} & 2/3 \end{bmatrix},$$

and we have a singular value decomposition for A:

$$\begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 0 & 1 \end{bmatrix} = A = U\Sigma V^{T} = \begin{bmatrix} 1/3\sqrt{2} & -1/\sqrt{2} & 2/3 \\ 4/3\sqrt{2} & 0 & -1/3 \\ 1/3\sqrt{2} & 1/\sqrt{2} & 2/3 \end{bmatrix} \begin{bmatrix} 3 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}^{T}.$$

A few more observations of the various elements of the procedure for finding a singular value decomposition are in order.

Theorem 9. Let A be an $m \times n$ matrix. Suppose that $\{\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n\}$ is an orthonormal basis of \mathbb{R}^n consisting of eigenvectors of the symmetric matrix $A^T A$ arranged so that the corresponding eigenvalues of $A^T A$ are $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n \geq 0$. If A has r nonzero singular values, then $\{A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_r\}$ is an orthogonal basis for $\operatorname{Col}(A)$ and $\operatorname{rank}(A) = r$.

Proof. Because \vec{v}_i and $\lambda_j \vec{v}_j$ are orthogonal when $i \neq j$, we have

$$(A\vec{v}_i)^T (A\vec{v}_j) = \vec{v}_i^T A^T A\vec{v}_j = \vec{v}_i(\lambda\vec{v}_j) = 0.$$

This means that $\{A\vec{v}_1, A\vec{v}_2, \dots, A\vec{v}_n\}$ is an orthogonal set.

Furthermore, since

$$||A\vec{v}_{i}||^{2} = (A\vec{v}_{i})^{T}A\vec{v}_{i} = \vec{v}_{i}^{T}A^{T}A\vec{v}_{i} = \vec{v}_{i}^{T}(\lambda\vec{v}_{i}) = \lambda_{i}(\vec{v}_{i}^{T}\vec{v}_{i}) = \lambda_{i}||\vec{v}_{i}||^{2} = \lambda_{i},$$

then each $\lambda_i \geq 0$ and $A\vec{v}_i \neq \vec{0}$ only when $\lambda_i \neq 0$.

Thus the orthogonal set of nonzero vectors $\{A\vec{v}_1, A\vec{v}_2, \ldots, A\vec{v}_r\}$ is linearly independent.

Now we have that $\text{Span}\{A\vec{v}_1, A\vec{v}_2, \dots, A\vec{v}_r\}$ is a subspace of Col(A).

To get the other inclusion, we notice for $\vec{y} \in \text{Col}(A)$ that there is

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n \in \mathbb{R}^m$$

such that

$$\vec{y} = A\vec{x} = c_1 A\vec{v}_1 + c_2 A\vec{v}_2 + \dots + c_r A\vec{v}_r + c_{r+1} A\vec{v}_{r+1} + \dots + c_n A\vec{v}_n$$
$$= c_1 A\vec{v}_1 + c_2 A\vec{v}_2 + \dots + c_r A\vec{v}_r + \vec{0}.$$

Thus \vec{y} belongs to Span $\{A\vec{v}_1, A\vec{v}_2, \dots, A\vec{v}_r\}$.

Since $\{A\vec{v}_1, A\vec{v}_2, \dots, A\vec{v}_r\}$ is a linearly independent spanning set for $\operatorname{Col}(A)$, the dimension of $\operatorname{Col}(A)$ is r, and so $\operatorname{rank}(A) = r$.

Example. Find a singular value decomposition of

$$A = \begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix}.$$

Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

$$A^{T}A = \begin{bmatrix} 4 & 8\\ 11 & 7\\ 14 & -2 \end{bmatrix} \begin{bmatrix} 4 & 11 & 14\\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 80 & 100 & 40\\ 100 & 170 & 140\\ 40 & 140 & 200 \end{bmatrix}.$$

The eigenvalues of $A^T A$ are $\lambda_1 = 360$, $\lambda_2 = 90$, and $\lambda_3 = 0$, and corresponding unit eigenvectors are

$$\vec{v}_1 = \begin{bmatrix} 1/3\\2/3\\2/3\end{bmatrix}, \ \vec{v}_2 = \begin{bmatrix} -2/3\\-1/3\\2/3\end{bmatrix}, \ \vec{v}_3 = \begin{bmatrix} 2/3\\-2/3\\1/3\end{bmatrix}.$$

These are the columns of V.

Step 2. The singular values of A are $\sigma_1 = \sqrt{\lambda_1} = 6\sqrt{10}$, $\sigma_2 = \sqrt{\lambda_2} = 3\sqrt{10}$, and $\sigma_3 = \sqrt{\lambda_3} = 0$.

The matrix Σ (of the same size as A) is

$$\Sigma = \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 \end{bmatrix}.$$

Step 3. Construct the matrix U.

The $r = \operatorname{rank}(A)$ nonzero singular values of A determine the first r columns of U. From $AV = U\Sigma$, we have

$$\vec{u}_1 = \frac{A\vec{v}_1}{\sigma_1} = \frac{1}{6\sqrt{10}} \begin{bmatrix} 18\\6 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10}\\1/\sqrt{10} \end{bmatrix},\\ \vec{u}_2 = \frac{A\vec{v}_2}{\sigma_2} = \frac{1}{3\sqrt{10}} \begin{bmatrix} 3\\-9 \end{bmatrix} = \begin{bmatrix} 1/\sqrt{10}\\-3\sqrt{10} \end{bmatrix}$$

Do we need to find more columns of U? No, because the vectors \vec{u}_1 and \vec{v}_2 form an orthonormal basis for \mathbb{R}^2 (and the dimension of $\operatorname{Nul}(A^T)$ is 0 too).

A singular value decomposition of A is

$$\begin{bmatrix} 4 & 11 & 14 \\ 8 & 7 & -2 \end{bmatrix} = \begin{bmatrix} 3/\sqrt{10} & 1/\sqrt{10} \\ 1/\sqrt{10} & -3/\sqrt{10} \end{bmatrix} \begin{bmatrix} 6\sqrt{10} & 0 & 0 \\ 0 & 3\sqrt{10} & 0 & 0 \end{bmatrix} \begin{bmatrix} 1/3 & -2/3 & 2/3 \\ 2/3 & -1/3 & -2/3 \\ 2/3 & 2/3 & 1/3 \end{bmatrix}^T$$

Is this singular value decomposition of A unique? No because replacing \vec{v}_1 with $-\vec{v}_1$ and \vec{u}_1 with $-\vec{u}_1$ gives another singular value decomposition of A.

Just some other things to recongize: for $m \times n$ matrix A with rank $r \ge 1$, in a singular value decomposition $A = U\Sigma V^T$ we have

- (i) the columns $\vec{v}_1, \ldots, \vec{v}_r$ of V form an orthonormal basis for $\operatorname{Col}(A^T) = \operatorname{Row}(A)$,
- (ii) the columns $\vec{v}_{r+1}, \ldots, \vec{v}_n$ of V form an orthonormal basis for Nul(A) when r < n,
- (iii) the columns $\vec{u}_1, \ldots, \vec{u}_r$ of U form an orthonormal basis for Col(A),
- (iv) the columns $\vec{u}_{r+1}, \ldots, \vec{u}_m$ of U form an orthonormal basis for Nul (A^T) when r < m.