Math 313 Lecture \#33

§7.4: The Singular Value Decomposition

We have seen the usefulness of the orthogonal diagonalization of symmetric (square) matrices: $A=P D P^{T}$.

Is there something similar for non-square matrices? Yes there is.
A Motivating Example. Consider the factorization of the following 3×2 matrix:

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ccc}
1 / \sqrt{2} & 1 / \sqrt{2} & 0 \\
1 / \sqrt{2} & -1 / \sqrt{2} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right] .
$$

We have factored A as a product

$$
A=U \Sigma V^{T}
$$

where U is a 3×3 orthogonal matrix, Σ is a 3×2 matrix whose off diagonal entries are zero, and V is a 2×2 orthogonal matrix.
Can any $m \times n$ matrix A alway be factored as $U \Sigma V^{T}$?
Theorem 10. For each $A \in \mathbb{R}^{m \times n}$, there exists an orthogonal $m \times m$ matrix U, an $m \times n$ matrix Σ whose off-diagonal entries are all zero and whose diagonal entries satisfy $\sigma_{1} \geq \sigma_{2} \geq \cdots \geq \sigma_{n} \geq 0$, and an orthogonal $n \times n$ matrix V such that $A=U \Sigma V^{T}$.
The product $A=U \Sigma V^{T}$ is called a singular value decomposition of A, and the nonnegative diagonal entries σ_{i} of Σ are called the singular values of A.
Example. Find a singular value decomposition of

$$
A=\left[\begin{array}{ll}
1 & 0 \\
2 & 2 \\
0 & 1
\end{array}\right]
$$

Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

$$
A^{T} A=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
2 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
5 & 4 \\
4 & 5
\end{array}\right]
$$

The eigenvalues and unit eigenvectors of $A^{T} A$ are

$$
\lambda_{1}=9, \quad \vec{v}_{1}=\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right], \quad \lambda_{2}=1, \quad \vec{v}_{2}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] .
$$

Fact: the eigenvalues of $A^{T} A$ are always real and nonnegative because $A^{T} A \vec{x}=\lambda \vec{x}$ for $\vec{x} \neq 0$ implies

$$
\|A \vec{x}\|^{2}=\vec{x}^{T} A^{T} A \vec{x}=\lambda \vec{x}^{T} \vec{x}=\lambda\|\vec{x}\|^{2} .
$$

We have already ordered the eigenvalues in decreasing order.

Since these eigenvectors are orthogonal (they belong to distinct eigenvalues of an symmetric matrix), we have

$$
V=\left[\begin{array}{ll}
\vec{v}_{1} & \vec{v}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right] .
$$

Step 2. The singular values of A are $\sigma_{1}=\sqrt{\lambda_{1}}=3$ and $\sigma_{2}=\sqrt{\lambda_{2}}=1$, and so

$$
\Sigma=\left[\begin{array}{ll}
3 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]
$$

Fact: The number of nonzero singular values of A is the rank of A.
Observe that the rank of A is 2 and that A has 2 nonzero singular values.
Step 3. Each nonzero singular value determines a column of U (but not necessarily all of the columns of U).
Since $A=U \Sigma V^{T}$ and V is orthogonal, we have $A V=U \Sigma$. Passing to the columns of this, we have

$$
A \vec{v}_{i}=\sigma_{i} \vec{u}_{i}
$$

which can be solved for \vec{u}_{i} when $\sigma_{i} \neq 0$.
Since we have two nonzero singular values, the first two columns of U are

$$
\begin{aligned}
& \vec{u}_{1}=\frac{A \vec{v}_{1}}{\sigma_{1}}=\frac{1}{3}\left[\begin{array}{ll}
1 & 0 \\
2 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\frac{1}{3}\left[\begin{array}{l}
1 / \sqrt{2} \\
4 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{l}
1 / 3 \sqrt{2} \\
4 / 3 \sqrt{2} \\
1 / 3 \sqrt{2}
\end{array}\right], \\
& \vec{u}_{2}=\frac{A \vec{v}_{2}}{\sigma_{2}}=\frac{1}{1}\left[\begin{array}{ll}
1 & 0 \\
2 & 2 \\
0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right]=\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right] .
\end{aligned}
$$

Those columns of U determined by the nonzero singular values belong to $\operatorname{Col}(A)$. The remainder of the columns of U are an orthonormal basis for $(\operatorname{Col} A)^{\perp}=\operatorname{Nul}\left(A^{T}\right)$.
Here, the third (and last) column of U is a unit basis vector for $\operatorname{Nul}\left(A^{T}\right)$:

$$
A^{T}=\left[\begin{array}{lll}
1 & 2 & 0 \\
0 & 2 & 1
\end{array}\right] \sim\left[\begin{array}{ccc}
1 & 0 & -1 \\
0 & 1 & 1 / 2
\end{array}\right] \Rightarrow \vec{u}_{3}=\left[\begin{array}{c}
2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right]
$$

Then

$$
U=\left[\begin{array}{ccc}
1 / 3 \sqrt{2} & -1 / \sqrt{2} & 2 / 3 \\
4 / 3 \sqrt{2} & 0 & -1 / 3 \\
1 / 3 \sqrt{2} & 1 / \sqrt{2} & 2 / 3
\end{array}\right]
$$

and we have a singular value decomposition for A :

$$
\left[\begin{array}{ll}
1 & 0 \\
2 & 2 \\
0 & 1
\end{array}\right]=A=U \Sigma V^{T}=\left[\begin{array}{ccc}
1 / 3 \sqrt{2} & -1 / \sqrt{2} & 2 / 3 \\
4 / 3 \sqrt{2} & 0 & -1 / 3 \\
1 / 3 \sqrt{2} & 1 / \sqrt{2} & 2 / 3
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 / \sqrt{2} & -1 / \sqrt{2} \\
1 / \sqrt{2} & 1 / \sqrt{2}
\end{array}\right]^{T}
$$

A few more observations of the various elements of the procedure for finding a singular value decomposition are in order.
Theorem 9. Let A be an $m \times n$ matrix. Suppose that $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ is an orthonormal basis of \mathbb{R}^{n} consisting of eigenvectors of the symmetric matrix $A^{T} A$ arranged so that the corresponding eigenvalues of $A^{T} A$ are $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n} \geq 0$. If A has r nonzero singular values, then $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}\right\}$ is an orthogonal basis for $\operatorname{Col}(A)$ and $\operatorname{rank}(A)=r$.
Proof. Because \vec{v}_{i} and $\lambda_{j} \vec{v}_{j}$ are orthogonal when $i \neq j$, we have

$$
\left(A \vec{v}_{i}\right)^{T}\left(A \vec{v}_{j}\right)=\vec{v}_{i}^{T} A^{T} A \vec{v}_{j}=\vec{v}_{i}\left(\lambda \vec{v}_{j}\right)=0 .
$$

This means that $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{n}\right\}$ is an orthogonal set.
Furthermore, since

$$
\left\|A \vec{v}_{i}\right\|^{2}=\left(A \vec{v}_{i}\right)^{T} A \vec{v}_{i}=\vec{v}_{i}^{T} A^{T} A \vec{v}_{i}=\vec{v}_{i}^{T}\left(\lambda \vec{v}_{i}\right)=\lambda_{i}\left(\vec{v}_{i}^{T} \vec{v}_{i}\right)=\lambda_{i}\left\|\vec{v}_{i}\right\|^{2}=\lambda_{i}
$$

then each $\lambda_{i} \geq 0$ and $A \vec{v}_{i} \neq \overrightarrow{0}$ only when $\lambda_{i} \neq 0$.
Thus the orthogonal set of nonzero vectors $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}\right\}$ is linearly independent.
Now we have that $\operatorname{Span}\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}\right\}$ is a subspace of $\operatorname{Col}(A)$.
To get the other inclusion, we notice for $\vec{y} \in \operatorname{Col}(A)$ that there is

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n} \in \mathbb{R}^{m}
$$

such that

$$
\begin{aligned}
\vec{y} & =A \vec{x}=c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}+\cdots+c_{r} A \vec{v}_{r}+c_{r+1} A \vec{v}_{r+1}+\cdots+c_{n} A \vec{v}_{n} \\
& =c_{1} A \vec{v}_{1}+c_{2} A \vec{v}_{2}+\cdots+c_{r} A \vec{v}_{r}+\overrightarrow{0} .
\end{aligned}
$$

Thus \vec{y} belongs to $\operatorname{Span}\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}\right\}$.
Since $\left\{A \vec{v}_{1}, A \vec{v}_{2}, \ldots, A \vec{v}_{r}\right\}$ is a linearly independent spanning set for $\operatorname{Col}(A)$, the dimension of $\operatorname{Col}(A)$ is r, and so $\operatorname{rank}(A)=r$.
Example. Find a singular value decomposition of

$$
A=\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]
$$

Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

$$
A^{T} A=\left[\begin{array}{cc}
4 & 8 \\
11 & 7 \\
14 & -2
\end{array}\right]\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]=\left[\begin{array}{ccc}
80 & 100 & 40 \\
100 & 170 & 140 \\
40 & 140 & 200
\end{array}\right]
$$

The eigenvalues of $A^{T} A$ are $\lambda_{1}=360, \lambda_{2}=90$, and $\lambda_{3}=0$, and corresponding unit eigenvectors are

$$
\vec{v}_{1}=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right], \quad \vec{v}_{2}=\left[\begin{array}{c}
-2 / 3 \\
-1 / 3 \\
2 / 3
\end{array}\right], \vec{v}_{3}=\left[\begin{array}{c}
2 / 3 \\
-2 / 3 \\
1 / 3
\end{array}\right] .
$$

These are the columns of V.

Step 2. The singular values of A are $\sigma_{1}=\sqrt{\lambda_{1}}=6 \sqrt{10}, \sigma_{2}=\sqrt{\lambda_{2}}=3 \sqrt{10}$, and $\overline{\sigma_{3}}=\sqrt{\lambda_{3}}=0$.

The matrix Σ (of the same size as A) is

$$
\Sigma=\left[\begin{array}{ccc}
6 \sqrt{10} & 0 & 0 \\
0 & 3 \sqrt{10} & 0
\end{array}\right] .
$$

Step 3. Construct the matrix U.
The $r=\operatorname{rank}(A)$ nonzero singular values of A determine the first r columns of U.
From $A V=U \Sigma$, we have

$$
\begin{aligned}
& \vec{u}_{1}=\frac{A \vec{v}_{1}}{\sigma_{1}}=\frac{1}{6 \sqrt{10}}\left[\begin{array}{c}
18 \\
6
\end{array}\right]=\left[\begin{array}{l}
3 / \sqrt{10} \\
1 / \sqrt{10}
\end{array}\right], \\
& \vec{u}_{2}=\frac{A \vec{v}_{2}}{\sigma_{2}}=\frac{1}{3 \sqrt{10}}\left[\begin{array}{c}
3 \\
-9
\end{array}\right]=\left[\begin{array}{l}
1 / \sqrt{10} \\
-3 \sqrt{10}
\end{array}\right] .
\end{aligned}
$$

Do we need to find more columns of U ? No, because the vectors \vec{u}_{1} and \vec{v}_{2} form an orthonormal basis for \mathbb{R}^{2} (and the dimension of $\operatorname{Nul}\left(A^{T}\right)$ is 0 too).

A singular value decomposition of A is

$$
\left[\begin{array}{ccc}
4 & 11 & 14 \\
8 & 7 & -2
\end{array}\right]=\left[\begin{array}{cc}
3 / \sqrt{10} & 1 / \sqrt{10} \\
1 / \sqrt{10} & -3 / \sqrt{10}
\end{array}\right]\left[\begin{array}{cccc}
6 \sqrt{10} & 0 & 0 & \\
0 & 3 \sqrt{10} & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
1 / 3 & -2 / 3 & 2 / 3 \\
2 / 3 & -1 / 3 & -2 / 3 \\
2 / 3 & 2 / 3 & 1 / 3
\end{array}\right]^{T} .
$$

Is this singular value decomposition of A unique? No because replacing \vec{v}_{1} with $-\vec{v}_{1}$ and \vec{u}_{1} with $-\vec{u}_{1}$ gives another singular value decomposition of A.
Just some other things to recongize: for $m \times n$ matrix A with rank $r \geq 1$, in a singular value decomposition $A=U \Sigma V^{T}$ we have
(i) the columns $\vec{v}_{1}, \ldots, \vec{v}_{r}$ of V form an orthonormal basis for $\operatorname{Col}\left(A^{T}\right)=\operatorname{Row}(A)$,
(ii) the columns $\vec{v}_{r+1}, \ldots, \vec{v}_{n}$ of V form an orthonormal basis for $\operatorname{Nul}(A)$ when $r<n$,
(iii) the columns $\vec{u}_{1}, \ldots, \vec{u}_{r}$ of U form an orthonormal basis for $\operatorname{Col}(A)$,
(iv) the columns $\vec{u}_{r+1}, \ldots, \vec{u}_{m}$ of U form an orthonormal basis for $\operatorname{Nul}\left(A^{T}\right)$ when $r<m$.

