
Math 313 Lecture #33
§7.4: The Singular Value Decomposition

We have seen the usefulness of the orthogonal diagonalization of symmetric (square)
matrices: A = PDP T .

Is there something similar for non-square matrices? Yes there is.

A Motivating Example. Consider the factorization of the following 3× 2 matrix:
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We have factored A as a product
A = UΣV T

where U is a 3× 3 orthogonal matrix, Σ is a 3× 2 matrix whose off diagonal entries are
zero, and V is a 2× 2 orthogonal matrix.

Can any m× n matrix A alway be factored as UΣV T ?

Theorem 10. For each A ∈ Rm×n, there exists an orthogonal m × m matrix U , an
m×n matrix Σ whose off-diagonal entries are all zero and whose diagonal entries satisfy
σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0, and an orthogonal n× n matrix V such that A = UΣV T .

The product A = UΣV T is called a singular value decomposition of A, and the
nonnegative diagonal entries σi of Σ are called the singular values of A.

Example. Find a singular value decomposition of

A =

1 0
2 2
0 1

 .
Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

ATA =

[
1 2 0
0 2 1

]1 0
2 2
0 1

 =

[
5 4
4 5

]
.

The eigenvalues and unit eigenvectors of ATA are

λ1 = 9, ~v1 =
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√
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, λ2 = 1, ~v2 =
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.

Fact: the eigenvalues of ATA are always real and nonnegative because ATA~x = λ~x for
~x 6= 0 implies

‖A~x‖2 = ~xTATA~x = λ~xT~x = λ‖~x‖2.

We have already ordered the eigenvalues in decreasing order.



Since these eigenvectors are orthogonal (they belong to distinct eigenvalues of an sym-
metric matrix), we have

V =
[
~v1 ~v2

]
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Step 2. The singular values of A are σ1 =
√
λ1 = 3 and σ2 =

√
λ2 = 1, and so

Σ =

3 0
0 1
0 0

 .
Fact: The number of nonzero singular values of A is the rank of A.

Observe that the rank of A is 2 and that A has 2 nonzero singular values.

Step 3. Each nonzero singular value determines a column of U (but not necessarily all
of the columns of U).

Since A = UΣV T and V is orthogonal, we have AV = UΣ. Passing to the columns of
this, we have

A~vi = σi~ui,

which can be solved for ~ui when σi 6= 0.

Since we have two nonzero singular values, the first two columns of U are

~u1 =
A~v1
σ1

=
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 ,
~u2 =
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 .
Those columns of U determined by the nonzero singular values belong to Col(A). The
remainder of the columns of U are an orthonormal basis for (ColA)⊥ = Nul(AT ).

Here, the third (and last) column of U is a unit basis vector for Nul(AT ):

AT =

[
1 2 0
0 2 1

]
∼
[
1 0 −1
0 1 1/2

]
⇒ ~u3 =

 2/3
−1/3
2/3

 .
Then
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 ,
and we have a singular value decomposition for A:1 0

2 2
0 1

 = A = UΣV T =

1/3
√

2 −1/
√

2 2/3

4/3
√

2 0 −1/3

1/3
√

2 1/
√

2 2/3

3 0
0 1
0 0

[1/√2 −1/
√

2

1/
√

2 1/
√

2

]T
.



A few more observations of the various elements of the procedure for finding a singular
value decomposition are in order.

Theorem 9. Let A be an m×n matrix. Suppose that {~v1, ~v2, . . . , ~vn} is an orthonormal
basis of Rn consisting of eigenvectors of the symmetric matrix ATA arranged so that the
corresponding eigenvalues of ATA are λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0. If A has r nonzero singular
values, then {A~v1, A~v2, . . . , A~vr} is an orthogonal basis for Col(A) and rank(A) = r.

Proof. Because ~vi and λj~vj are orthogonal when i 6= j, we have

(A~vi)
T (A~vj) = ~vTi A

TA~vj = ~vi(λ~vj) = 0.

This means that {A~v1, A~v2, . . . , A~vn} is an orthogonal set.

Furthermore, since

‖A~vi‖2 = (A~vi)
TA~vi = ~vTi A

TA~vi = ~vTi (λ~vi) = λi(~v
T
i ~vi) = λi‖~vi‖2 = λi,

then each λi ≥ 0 and A~vi 6= ~0 only when λi 6= 0.

Thus the orthogonal set of nonzero vectors {A~v1, A~v2, . . . , A~vr} is linearly independent.

Now we have that Span{A~v1, A~v2, . . . , A~vr} is a subspace of Col(A).

To get the other inclusion, we notice for ~y ∈ Col(A) that there is

~x = c1~v1 + c2~v2 + · · ·+ cn~vn ∈ Rm

such that

~y = A~x = c1A~v1 + c2A~v2 + · · ·+ crA~vr + cr+1A~vr+1 + · · ·+ cnA~vn

= c1A~v1 + c2A~v2 + · · ·+ crA~vr +~0.

Thus ~y belongs to Span{A~v1, A~v2, . . . , A~vr}.
Since {A~v1, A~v2, . . . , A~vr} is a linearly independent spanning set for Col(A), the dimen-
sion of Col(A) is r, and so rank(A) = r. �

Example. Find a singular value decomposition of

A =

[
4 11 14
8 7 −2

]
.

Step 1. The matrix V is an orthogonal matrix that diagonalizes the symmetric matrix

ATA =

 4 8
11 7
14 −2

[4 11 14
8 7 −2

]
=

 80 100 40
100 170 140
40 140 200

 .
The eigenvalues of ATA are λ1 = 360, λ2 = 90, and λ3 = 0, and corresponding unit
eigenvectors are

~v1 =

1/3
2/3
2/3

 , ~v2 =

−2/3
−1/3
2/3

 , ~v3 =

 2/3
−2/3
1/3

 .
These are the columns of V .



Step 2. The singular values of A are σ1 =
√
λ1 = 6

√
10, σ2 =

√
λ2 = 3

√
10, and

σ3 =
√
λ3 = 0.

The matrix Σ (of the same size as A) is

Σ =

[
6
√

10 0 0

0 3
√

10 0

]
.

Step 3. Construct the matrix U .

The r = rank(A) nonzero singular values of A determine the first r columns of U .

From AV = UΣ, we have
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=
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]
=
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]
,
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.

Do we need to find more columns of U? No, because the vectors ~u1 and ~v2 form an
orthonormal basis for R2 (and the dimension of Nul(AT ) is 0 too).

A singular value decomposition of A is

[
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8 7 −2

]
=
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.

Is this singular value decomposition of A unique? No because replacing ~v1 with −~v1 and
~u1 with −~u1 gives another singular value decomposition of A.

Just some other things to recongize: for m× n matrix A with rank r ≥ 1, in a singular
value decomposition A = UΣV T we have

(i) the columns ~v1, . . . , ~vr of V form an orthonormal basis for Col(AT ) = Row(A),

(ii) the columns ~vr+1, . . . , ~vn of V form an orthonormal basis for Nul(A) when r < n,

(iii) the columns ~u1, . . . , ~ur of U form an orthonormal basis for Col(A),

(iv) the columns ~ur+1, . . . , ~um of U form an orthonormal basis for Nul(AT ) when r < m.


