
+1/1/60+

001

$\begin{array}{c} \text{Math 313} \\ \text{Exam 3} \\ \text{June 9,10, 2015} \end{array}$

Nam	e: <u> </u>	Key		
Secti	on:			
Instr	ucto	r:		

Encode your BYU ID in the grid below.

			-					-		
	0)	0	0	0	0	0	0	0
	1]1	$\Box 1$	$\Box 1$	$\Box 1$	1	$\Box 1$	1
	2	¢	2	$\mathbf{]2}$	$\Box 2$	$\Box 2$	$\boxed{2}$	$\boxed{2}$	$\boxed{2}$	$\Box 2$
	3		3	3	3		3	3		
	4	4	1] 4	$\Box 4$		4	4		
	$\Box 5$		5]5	5		5	5		
	6		3	6	6	6	6	6	6	6
	7		7	7	7	7	7	7	7	7
	8		8	8	8	8	8	8	8	8
Γ	9)	9	9	9	9	9	9	9

Instructions

- I) Do not write on the barcode area at the top of each page, or near the four circles on each page.
- **II**) Fill in the correct boxes for your BYU ID and for the correct answer on the multiple choice completely. Multiple choice questions are 4 points each.
- **III**) Multiple choice questions that have more than one correct answer will be marked with a **\$**. All other questions have only one correct answer.
- ${\bf IV})$ For questions which require a written answer, show all your work in the space provided and justify your answer.
- **V**) Simplify your answers.
- **VI**) Scientific calculators are allowed.
- $\mathbf{VII})~$ No books or notes are allowed.
- **VIII**) There is no time limit on this exam.

Part I: Multiple Choice Questions: Questions marked with a A have more than one correct answer. Mark all correct answers. The other questions have one right answer. (4 points each)

- 1 **&** Which of the following statements are correct? Mark all that apply.
 - \bowtie A set S of p vectors that span a vector space space V of dimension p is a basis for V.
 - For each subspace H of a finite dimensional vector space V, we have dim $H \leq \dim V$.
 - The vector space \mathbb{R}^2 is a subspace of the vector space \mathbb{R}^3 .
 - A linearly independent set S of n vectors in an n-dimensional vector space V is a basis for V.
 - The dimension of the vector space of all $m \times n$ matrices $M_{m \times n}$ is m + n.
 - The vector space of all polynomials \mathbb{P} is finite-dimensional.

2 What is the smallest possible dimension of Nul A for a 9×14 matrix A?

+1/3/58+

3 \clubsuit Which of the following values of λ are not eigenvalues of $A = \begin{bmatrix} 3 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & -1 & -1 \end{bmatrix}$? Mark all that apply.

 $\begin{array}{c} \boxed{\begin{array}{c} \lambda = -2 \end{array}} & \lambda = -2 \\ \boxed{\begin{array}{c} \lambda = -2 \end{array}} & \lambda = -2 \\ \boxed{\begin{array}{c} 0 \\ 0 \end{array}} & \begin{pmatrix} 5 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 \end{array} \end{array} \\ \hline{\begin{array}{c} 0 \\ 0 \end{array}} & \lambda = -1 \\ \boxed{\begin{array}{c} \lambda = 2 \end{array}} \\ \boxed{\begin{array}{c} \lambda = 0 \end{array}} & \lambda = 1 \\ \boxed{\begin{array}{c} 2 & 0 & 0 \\ 0 & -7 & 4 \\ 0 & -1 & -2 \end{array}} \\ \hline{\begin{array}{c} \lambda = 1 \end{array}} \\ \hline{\begin{array}{c} \lambda = 3 \end{array}} \end{array}$

+1/4	4/57+

 $5 \clubsuit$ Which of the following matrices are diagonalizable? Mark all that apply.

6	Find	the	eigen	values	of

$$A = \begin{bmatrix} 1 & 2 \\ -2 & 1 \end{bmatrix}.$$

$$\begin{array}{c|c} \lambda = 2 \pm i \\ \lambda = -2 \pm i \\ \lambda = -1, 3 \\ \lambda = 1 \pm 2i \\ \lambda = -1 \pm 2i \\ \lambda = -1 \pm 2i \\ \lambda = 1, -3 \end{array}$$

$$(1-\lambda)(1-\lambda)+4=\lambda^{2}-2\lambda+5$$

 $\lambda=\frac{2\pm\sqrt{4-20}}{2}$

+1/5/56+

8 Find the projection of $(1, 2, -2, 1)^T$ onto the vector $(0, -1, 1, 3)^T$.

9 Let $\mathbf{v_1}$, $\mathbf{v_2}$, and \mathbf{w} be given as below. Find the orthogonal projection of \mathbf{w} onto $\operatorname{Span}(\mathbf{v_1}, \mathbf{v_2})$.

$$\mathbf{v_1} = \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix}, \ \mathbf{v_2} = \begin{bmatrix} 0\\2\\-1\\-2 \end{bmatrix}, \ \mathbf{w} = \begin{bmatrix} 4\\3\\2\\1 \end{bmatrix}$$
$$(2, 14, -24, -8)^T \qquad \underbrace{12}_{9} \begin{bmatrix} 1\\2\\0\\2 \end{bmatrix} + \underbrace{2}_{9} \begin{bmatrix} 0\\2\\-1\\-2 \end{bmatrix} = \underbrace{12}_{9} \begin{bmatrix} 1\\2\\0\\-2 \end{bmatrix} = \underbrace{12$$

10 **&** Which of the following statements are true? Mark all that apply.

- There are subspaces of \mathbb{R}^n that do not have an orthogonal complement.
- The orthogonal complement of the column space of a matrix is the null space of that matrix.
- \boxtimes If a subspace of \mathbb{R}^n has an orthogonal basis, it also has an orthonormal basis.
- Multiplying two vectors by an orthogonal matrix preserves their angle.
 - An orthogonal matrix is a matrix with orthogonal columns.
- Multiplication of a vector by an orthogonal matrix preserves magnitude of the vector.

_

+1/7/54+

12
$$0 1 2 3 4 5 6 7 8 9 10$$
 Administrative Use Only

Show that the polynomials $p_1(t) = 1$, $p_2(t) = 2t$, $p_3(t) = -2+4t^2$, and $p_3(t) = -12t+8t^3$ form a basis for the vector space \mathbb{P}_3 . [Hint; use the coordinate mapping corresponding to the basis $\{1, t, t^2, t^3\}$.]

$$\begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}, \begin{bmatrix} 2t \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ 9 \end{bmatrix}, \begin{bmatrix} 12t + 8t^3 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 12t + 8t^3 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -7 & 0 \\ 0 & 2 & 0 - 12 \\ 0 & 0 & -72 \\ 0 & 0 &$$

12
$$0 1 2 3 4 5 6 7 8 9 10$$
 Administrative Use Only

Show that the polynomials $p_1(t) = 1$, $p_2(t) = 2t$, $p_3(t) = -2+4t^2$, and $p_3(t) = -12t+8t^3$ form a basis for the vector space \mathbb{P}_3 . [Hint; use the coordinate mapping corresponding to the basis $\{1, t, t^2, t^3\}$.]

$$\begin{bmatrix} 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 8 \end{bmatrix}, \begin{bmatrix} 2t \end{bmatrix} = \begin{bmatrix} 2 \\ 9 \\ 9 \end{bmatrix}, \begin{bmatrix} 12t + 8t^3 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 12t + 8t^3 \end{bmatrix} = \begin{bmatrix} -7 \\ 0 \\ 0 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -7 & 0 \\ 0 & 2 & 0 - 12 \\ 0 & 0 & -72 \\ 0 & 0 &$$

 $\begin{array}{c} \lambda = 1: \\ \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 4 & 0 & 0 \\ -1 & 0 & 0 & 0 \end{bmatrix} \begin{pmatrix} b \\ 1 \\ 0 \end{pmatrix} \begin{bmatrix} -i & 0 & 1 & 0 \\ 0 & -i & 0 & 0 \\ -1 & 0 & -i & 0 \end{bmatrix} \begin{pmatrix} -L \\ 0 \\ 1 \end{pmatrix} \begin{pmatrix} L \\ 0 \\ 1 \end{pmatrix}$

$$W - proj W = \begin{bmatrix} 2/3 \\ 2/3 \end{bmatrix}^{-\frac{1}{3}} \begin{bmatrix} 2/3 \\ -\frac{1}{3} \end{bmatrix}^{-\frac{1}{3}} \begin{bmatrix} -20/4 \\ 13/9 \end{bmatrix}$$
$$W - proj W = \begin{bmatrix} 3 \\ -2 \\ 1 \end{bmatrix} - \begin{bmatrix} 23/9 \\ -20/9 \\ 13/9 \end{bmatrix} = \begin{bmatrix} 4/9 \\ 2/9 \\ -4/9 \end{bmatrix}$$

 $\|W - \operatorname{proj} W\| = \sqrt{16 + 4 + 16} = \sqrt{36} = \frac{6}{9} = \frac{2}{3}$

If A is a 3×3 matrix for which $A^T = -A$, prove that 0 is an eigenvalue of A. $dat(A) = det(A^T) = det(-A) = (-1)^3 det(A) = -det(A)$

Thus det(A) = 0

17

0 1 2 3 4 5 Administrative Use Only

Show for all vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^n that $\|\mathbf{u} + \mathbf{v}\|^2 - \|\mathbf{u} - \mathbf{v}\|^2 = 4\mathbf{u} \cdot \mathbf{v}$.

 $\|\underline{\mathbf{u}}_{+\underline{\mathbf{v}}}\|_{-\underline{\mathbf{u}}_{+\underline{\mathbf{v}}}} = (\underline{\mathbf{u}}_{+\underline{\mathbf{v}}}) \cdot (\underline{\mathbf{u}}_{+\underline{\mathbf{v}}}) - (\underline{\mathbf{u}}_{-\underline{\mathbf{v}}}) \cdot (\underline{\mathbf{u}}_{-\underline{\mathbf{v}}}) = \underline{\mathbf{u}}_{\underline{\mathbf{u}}} + 2\underline{\mathbf{u}}_{+\underline{\mathbf{v}}} \cdot \underline{\mathbf{v}}_{+\underline{\mathbf{v}}} - (\underline{\mathbf{u}}_{-\underline{\mathbf{u}}} - 2\underline{\mathbf{u}}_{+\underline{\mathbf{v}}} + \underline{\mathbf{v}}_{+\underline{\mathbf{v}}})$

二4