001

Math 313
 Exam 3

June 9,10, 2015

Name: Key
Section: \qquad
Instructor: \qquad

Encode your BYU ID in the grid below.
\square
\square
\square
\square
\square
\square
\square
\square
$\square 1$
$\square 1$
$1 \square$
$1 \square 1$
\square
\square
\square $1 \square 1$ $\square 1$
$\square 2 \square 2$
$\square 3 \square 3$
$\square 4 \square 4$
$\square 5 \square 5$
$\square 6 \square 6$
$\square \mathbf{7} \square \mathbf{7}$
$\square 8 \square \square 8 \square 8 \square 8 \square 8 \square 8 \square 8 \square 8$
$\square 9 \square 9$

Instructions

I) Do not write on the barcode area at the top of each page, or near the four circles on each page.
II) Fill in the correct boxes for your BYU ID and for the correct answer on the multiple choice completely. Multiple choice questions are 4 points each.
III) Multiple choice questions that have more than one correct answer will be marked with a \&. All other questions have only one correct answer.
IV) For questions which require a written answer, show all your work in the space provided and justify your answer.
V) Simplify your answers.
VI) Scientific calculators are allowed.
VII) No books or notes are allowed.
VIII) There is no time limit on this exam.

Part I: Multiple Choice Questions: Questions marked with a have more than one correct answer. Mark all correct answers. The other questions have one right answer. (4 points each)
1% Which of the following statements are correct? Mark all that apply.
\square A set S of p vectors that span a vector space space V of dimension p is a basis for V.
\searrow For each subspace H of a finite dimensional vector space V, we have $\operatorname{dim} H \leq$ $\operatorname{dim} V$.
\square The vector space \mathbb{R}^{2} is a subspace of the vector space \mathbb{R}^{3}.
【】 A linearly independent set S of n vectors in an n-dimensional vector space V is a basis for V.
"
\square The vector space of all polynomials \mathbb{P} is finite-dimensional.
$2 \quad$ What is the smallest possible dimension of $\operatorname{Nul} A$ for a 9×14 matrix A ?
$\square 14$
$\square 10$
0
23
\square
5

$+1 / 3 / 58+$
$3 \boldsymbol{\&} \quad$ Which of the following values of λ are not eigenvalues of $A=\left[\begin{array}{ccc}3 & 0 & 0 \\ 0 & -1 & 4 \\ 0 & -1 & -1\end{array}\right]$?
Mark all that apply.

$$
\begin{aligned}
& \square \lambda=-2 \quad \lambda=-2:\left[\begin{array}{ccc}
5 & 0 & 0 \\
0 & 1 & 4 \\
0 & -1 & 1
\end{array}\right] \\
& \lambda=-1:\left[\begin{array}{ccc}
4 & 0 & 0 \\
0 & 0 & 4 \\
0 & 0 & 0
\end{array}\right] \quad \lambda=2:\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & -3 & 4 \\
0 & -1 & -3
\end{array}\right] \\
& \Delta \lambda=-1 \\
& \square \lambda=2 \\
& \square \lambda=0 \\
& \lambda=1\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & -2 & 4 \\
0 & -1 & -2
\end{array}\right] \\
& \square \lambda=1 \\
& \not \lambda \lambda=3
\end{aligned}
$$

$4 \% \quad$ Which of the following matrices have $\lambda^{2}-10 \lambda+1$ as their characteristic polynomial? Mark all the apply.
$\square\left[\begin{array}{ll}3 & 5 \\ 4 & 1\end{array}\right]$
$\square\left[\begin{array}{ll}1 & 1 \\ 4 & 1\end{array}\right]$
$\Delta\left[\begin{array}{ll}9 & 8 \\ 1 & 1\end{array}\right] \quad(9-\lambda)(1-\lambda)-8=\lambda^{2}-10 \lambda+1$
$\square\left[\begin{array}{ll}0 & 1 \\ 1 & 5\end{array}\right]$
$\square\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
区 $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
$(8-\lambda)(2-\lambda)-15=\lambda^{2}-10 \lambda+1$

5 \& Which of the following matrices are diagonalizable? Mark all that apply.
$\boxtimes\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \quad(1-\lambda)^{2}-1=\lambda^{2}-2 \lambda \lambda=0,2$
$\square\left[\begin{array}{ll}2 & 1 \\ 0 & 2\end{array}\right] \lambda=2: \left.\left[\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right] \right\rvert\,$ fruvar
$\boxtimes\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\boxtimes\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right] \quad(2-\lambda)(1-\lambda)-1=\lambda^{2}-3 \lambda+1 \quad \frac{+3 \pm \sqrt{9-4}}{2}$
$\square\left[\begin{array}{cc}1 & -1 \\ 1 & 3\end{array}\right] \quad(1-\lambda)(3-\lambda) 41=\lambda^{2}-4 \lambda+4 \quad \lambda=2\left[\begin{array}{ccc}-1 & -1 & 0 \\ 1 & 1 & 0\end{array}\right] \quad$ I free var
$\searrow\left[\begin{array}{ll}1 & 2 \\ 0 & 2\end{array}\right]$

6 Find the eigenvalues of

$$
A=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

$\square \lambda=2 \pm i$
$\square \lambda=-2 \pm i$
$(1-\lambda)(1-\lambda)+4=\lambda^{2}-2 \lambda+5$
$\square \lambda=-1,3$
$\boxtimes \lambda=1 \pm 2 i$
$\square \lambda=-1 \pm 2 i$

$$
\lambda=\frac{2 \pm \sqrt{4-20}}{2}
$$

$\square \lambda=1,-3$

7 \& \quad Which vectors are orthogonal to $\mathbf{w}=(\mathbf{1}, \mathbf{1}, \mathbf{2}, \mathbf{- 2})^{\mathbf{T}}$? Mark all that apply.
$\square(2,-2,-1,1)^{T}$
$\square(3,-6,2,-2)^{T}$
$\square(2,2,-4,6)^{T}$
Х $(0,0,0,0)^{T}$
$\square(3,1,2,3)^{T}$
$\square(1,2,1,-2)^{T}$

8 Find the projection of $(1,2,-2,1)^{T}$ onto the vector $(0,-1,1,3)^{T}$.
$\square \frac{-1}{11}(1,2,-2,1)^{T}$

$$
(1,2,-2,1) \cdot(0,-1,1,3)=-1
$$

$\square \frac{1}{10}(1,2,-2,1)^{T}$
$(0,-1,1,3) \cdot(0,-1,1,3)=11$
$\square \frac{1}{10}(0,-1,1,3)^{T}$
$\frac{-1}{11}(0,-1,1,3)$
$\boxtimes \frac{-1}{11}(0,-1,1,3)^{T}$
$\square \frac{1}{11}(0,-1,1,3)^{T}$
$\square \frac{-1}{10}(1,2,-2,1)^{T}$

9 Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and \mathbf{w} be given as below. Find the orthogonal projection of \mathbf{w} onto $\operatorname{Span}\left(\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}\right)$.

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 \\
2 \\
0 \\
2
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
0 \\
2 \\
-1 \\
-2
\end{array}\right], \quad \mathbf{w}=\left[\begin{array}{l}
4 \\
3 \\
2 \\
1
\end{array}\right]
$$

$\square(2,14,-24,-8)^{T}$
$\boxtimes(4 / 3,28 / 9,-2 / 9,20 / 9)^{T} \quad \frac{12}{9}\left[\begin{array}{c}2 \\ 0 \\ 2\end{array}\right]+\frac{2}{9}\left[\begin{array}{c}2 \\ -1 \\ -2\end{array}\right]=$
$\square(12,22,-4,22)^{T}$
$\square(1 / 3,2,-8 / 3,-2 / 3)^{T}$
$\square(4 / 3,7 / 3,2 / 3,3)^{T}$

10 \& Which of the following statements are true? Mark all that apply.
\square There are subspaces of \mathbb{R}^{n} that do not have an orthogonal complement.
\square The orthogonal complement of the column space of a matrix is the null space of that matrix.
】 If a subspace of \mathbb{R}^{n} has an orthogonal basis, it also has an orthonormal basis.
\searrow Multiplying two vectors by an orthogonal matrix preserves their angle.
\square An orthogonal matrix is a matrix with orthogonal columns.
M Multiplication of a vector by an orthogonal matrix preserves magnitude of the vector.

Part II: Justify your answer and show all work for full credit.
$11 \quad \square$
\square 0 \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 8 \square 9 \square 10 Administrative Use Only

The scalar $\lambda=1$ is an eigenvalue of $A=\left[\begin{array}{ccc}2 & -8 & 2 \\ 2 & -15 & 4 \\ 8 & -64 & 17\end{array}\right]$. Find the eigenspace of A corresponding to the eigenvalue $\lambda=1$.

$$
x_{1}-8 x_{2}+2 x_{3}=0
$$

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
8 t-2 s \\
t \\
s
\end{array}\right]
$$

$$
\begin{aligned}
& {[1]=\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right],[2 t]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]} \\
& {\left[-2+4 t^{2}\right]=\left[\begin{array}{c}
-2 \\
0 \\
4 \\
0
\end{array}\right],\left[12 t+8 t^{3}\right]=\left[\begin{array}{c}
0 \\
-12 \\
0 \\
8
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 2 & 0 & -12 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 8
\end{array}\right] \sim I}
\end{aligned}
$$

since the coordinate vectors are linear inclipendent, and $\operatorname{dim} \mathbb{P}_{3}=4$, the polynomials form abasis of P_{3}.

$$
\begin{aligned}
& {[1]=\left[\begin{array}{c}
1 \\
0 \\
0
\end{array}\right],[2 t]=\left[\begin{array}{l}
2 \\
0 \\
0
\end{array}\right]} \\
& {\left[-2+4 t^{2}\right]=\left[\begin{array}{c}
-2 \\
0 \\
4 \\
0
\end{array}\right],\left[12 t+8 t^{3}\right]=\left[\begin{array}{c}
0 \\
-12 \\
0 \\
8
\end{array}\right]} \\
& {\left[\begin{array}{cccc}
1 & 0 & -2 & 0 \\
0 & 2 & 0 & -12 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 8
\end{array}\right] \sim I}
\end{aligned}
$$

since the coordinate vectors are linear inclipendent, and $\operatorname{dim} \mathbb{P}_{3}=4$, the polynomials form abasis of P_{3}.
$\square \mathbf{0} \square \mathbf{1} \square \mathbf{2} \square \mathbf{~} \square \mathbf{4} \square 5 \square 6 \square 7 \square 8 \quad \square 9 \quad \square 10$ Administrative Use Only

Let

$$
K=\left[\begin{array}{ccc}
1 & 0 & 1 \\
0 & 1 & 0 \\
-1 & 0 & 1
\end{array}\right]
$$

Find the eigenvalues and eigenvectors of K knowing that $\lambda=1$ is one of the eigenvalues.

$$
\begin{aligned}
&\left|\begin{array}{ccc}
1-\lambda & 0 & 1 \\
0 & 1-\lambda & 0 \\
-1 & 0 & 1-\lambda
\end{array}\right|=(1-\lambda)\left|\begin{array}{cc}
1-\lambda & 0 \\
0 & 1-\lambda
\end{array}\right|+\left|\begin{array}{cc}
0 & 1-\lambda \\
-1 & 1-\lambda
\end{array}\right|=(1-\lambda)^{3}+[1-\lambda)=(1-\lambda)\left[(1-\lambda)^{2}+1\right] \\
&=(1-\lambda)\left[\lambda^{2}-2 \lambda+2\right] \quad \lambda=1, \lambda=\frac{2 \pm \sqrt{4-8}}{2}=12 i \\
& \lambda=1: \\
& {\left[\begin{array}{cccc}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{array}\right]\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right) \quad\left[\begin{array}{cccc}
-i & 0 & 1 & 0 \\
0 & -i & 0 & 0 \\
-1 & 0 & -i & 0
\end{array}\right]\left(\begin{array}{c}
-L \\
0 \\
1
\end{array}\right) \quad\left(\begin{array}{l}
L=1-i \\
0 \\
1
\end{array}\right) }
\end{aligned}
$$

$\square \mathbf{0} \square \mathbf{1} \square \mathbf{2} \square \mathbf{3} \square \mathbf{4} \square 5 \square 6 \square \mathbf{7} \square \mathbf{~} \square \mathbf{\square} \quad \square 10$ Administrative Use Only

Let

$$
\mathbf{v}_{\mathbf{1}}=\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right], \quad \mathbf{v}_{\mathbf{2}}=\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right], \mathbf{w}=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]
$$

Find the distance from \mathbf{w} to the plane spanned by $\mathbf{v}_{\mathbf{1}}$ and $\mathbf{v}_{\mathbf{2}}$.

$$
\begin{aligned}
& \operatorname{Proj} \underline{w}=\frac{1}{3}\left[\begin{array}{l}
1 / 3 \\
2 / 3 \\
2 / 3
\end{array}\right]-\frac{11}{3}\left[\begin{array}{c}
-2 / 3 \\
2 / 3 \\
-1 / 3
\end{array}\right]=\left[\begin{array}{c}
23 / 9 \\
-20 / 9 \\
13 / 9
\end{array}\right] \\
& \underline{w} \text {-proj } \underline{w}=\left[\begin{array}{c}
3 \\
-2 \\
1
\end{array}\right]-\left[\begin{array}{c}
23 / 9 \\
-209 \\
13 / 9
\end{array}\right]=\left[\begin{array}{c}
4 / 9 \\
2 / 9 \\
-4 / 9
\end{array}\right] \\
& \| \underline{w}-\text { proj } \underline{w} \|=\frac{\sqrt{16+4+16}}{9}=\frac{\sqrt{36}}{9}=\frac{6}{9}=\frac{2}{3}
\end{aligned}
$$

$\square \mathbf{0} \square \mathbf{1} \square \mathbf{2} \square \mathbf{3} \square \mathbf{4} \quad \square 5$ Administrative Use Only

If A is a 3×3 matrix for which $A^{T}=-A$, prove that 0 is an eigenvalue of A.
$\operatorname{dat}(A)=\operatorname{det}\left(A^{\top}\right)=\operatorname{det}(-A)=(-1)^{3} \operatorname{det}(A)=-\operatorname{det}(A)$

Thus $\operatorname{det}(A)=0$.

17

Show for all vectors \mathbf{u}, \mathbf{v} in \mathbb{R}^{n} that $\|\mathbf{u}+\mathbf{v}\|^{2}-\|\mathbf{u}-\mathbf{v}\|^{2}=4 \mathbf{u} \cdot \mathbf{v}$.
$\|\underline{u}+\underline{v}\|^{2}-\|\underline{u}-\underline{v}\|^{2}=(\underline{u}+\underline{v}) \cdot(\underline{u}+\underline{v})-(\underline{u}-\underline{v}) \cdot(\underline{u}-\underline{v})=\underline{u} \underline{u}+2 \underline{u} \cdot \underline{v}+\underline{v} \underline{v}-(\underline{u}-\underline{u}-2 \underline{u} \cdot \underline{v}+\underline{v} \underline{v})$
$24 \underline{4} \cdot \underline{v}$

