			_		

001

Math 313 Exam 1 May 12,13, 2015

Name:	Key
Section:	
Instructor [.]	

Encode your BYU ID in the grid below.

0	0	0	0	0	0	0	0	0
1	$\Box 1$	1	$\Box 1$	$\Box 1$	$\Box 1$	$\Box 1$	1	1
2	$\Box 2$	$\boxed{2}$	$\boxed{2}$	$\boxed{2}$	$\boxed{2}$	$\boxed{2}$	$\Box 2$	$\Box 2$
3	3	3	3		3	3	3	
4	4	$\boxed{4}$	4	4	4	4	$\boxed{4}$	$\boxed{4}$
5	5	$\Box 5$			$\Box 5$	$\boxed{5}$	5	
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

Instructions

- I) Do not write on the barcode area at the top of each page, or near the four circles on each page.
- **II**) Fill in the correct boxes for your BYU ID and for the correct answer on the multiple choice completely. Multiple choice questions are 4 points each.
- **III**) Multiple choice questions that have more than one correct answer will be marked with a **\$**. All other questions have only one correct answer.
- ${\bf IV})$ For questions which require a written answer, show all your work in the space provided and justify your answer.
- **V**) Simplify your answers.
- **VI**) Scientific calculators are allowed.
- **VII**) No books or notes are allowed.
- **VIII**) There is no time limit on this exam.

+1/2/59+

Part I: Multiple Choice Questions: Questions marked with a A have more than one correct answer. Mark all correct answers. The other questions have one right answer. (4 points each)

1 For which value of the constant b does the system $x_1 + 3x_2 = 1$, $x_1 + bx_2 = -1$ have no solution?

2	A r	ow	echelon	form o	of $A =$	$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$	$\frac{2}{2}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$	is			
\square	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$2 \\ 0$	$\begin{bmatrix} 3\\1 \end{bmatrix}$							$\begin{bmatrix} 0\\ 0 \end{bmatrix}$	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{bmatrix} 0\\1 \end{bmatrix}$
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	$2 \\ 0$	$\begin{bmatrix} 0\\2 \end{bmatrix}$							$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0	$\begin{bmatrix} 0 \\ 1 \end{bmatrix}$
	$\begin{bmatrix} 1 \\ 0 \end{bmatrix}$	0 0	$\begin{bmatrix} 2\\1 \end{bmatrix}$							$\begin{bmatrix} 1\\ 1 \end{bmatrix}$	$\frac{2}{2}$	$\begin{bmatrix} 3 \\ 5 \end{bmatrix}$

+1/3/58+

3 For an $m \times n$ matrix A and a vector **b** in \mathbb{R}^m , which of the following are logically equivalent to the statement: the columns of A span \mathbb{R}^m ?

(i) Each **b** in \mathbb{R}^m is a linear combination of the columns of A.

(ii) Each row of A contains a pivot position.

(iii) The value of m is larger than the value of n.

4 Which of the following three statements about the matrix equation $A\vec{x} = \vec{b}$ are true?

- (i) If A is a 4×2 matrix, then for every \vec{b} in \mathbb{R}^4 , the matrix equation $A\vec{x} = \vec{b}$ has a least one solution.
- (ii) If A is a 2 × 4 matrix, then for every \vec{b} in \mathbb{R}^2 , the matrix equation $A\vec{x} = \vec{b}$ can never have a unique solution.
- (iii) If A is a 3×3 , then for every \vec{b} in \mathbb{R}^3 , the matrix equation $A\vec{x} = \vec{b}$ never has a solution.

+1/4/57+

5 \clubsuit Which of the following statements are true? (Assume any multiplication and additions are defined). Mark all that apply.

If every row of A is a pivot row of A, then $A\mathbf{x} = \mathbf{0}$ has only the trivial solution.

A homogeneous system $A\mathbf{x} = \mathbf{0}$ is always consistent.

The system $A\mathbf{x} = \mathbf{b}$ can be inconsistent even though $A\mathbf{x} = \mathbf{0}$ is consistent.

The system $A\mathbf{x} = \mathbf{b}$ can have a unique solution even though $A\mathbf{x} = \mathbf{0}$ does not.

The system $A\mathbf{x} = \mathbf{0}$ can have a unique solution even though $A\mathbf{x} = \mathbf{b}$ does not.

					\square

+1/5/56+

7 Which of the three vectors

$$\vec{u} = \begin{bmatrix} 6\\2\\-3\\1 \end{bmatrix}, \quad (iii) \begin{bmatrix} 2\\-3\\1 \end{bmatrix}, \quad (iii) \begin{bmatrix} 4\\5\\0 \end{bmatrix}$$

is in Span{ \vec{u}, \vec{v} } where
$$\vec{u} = \begin{bmatrix} 3\\1\\2 \end{bmatrix}, \quad \vec{v} = \begin{bmatrix} 1\\4\\-2 \end{bmatrix}?$$

$$\square \text{ only (ii) and (iii)} \qquad \square \text{ none of them.}$$

$$\square \text{ only (i) and (ii)} \qquad \square \text{ all of them}$$

$$\square \text{ only (i) and (ii)} \qquad \square \text{ only (iii)}$$

$$\square \text{ only (i) and (ii)} \qquad \square \text{ only (iii)}$$

8 Which of the following linear transformations is not onto? Only one answer applies. $\Box = 1$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ x_1 - x_2 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + 4x_2 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_1 + x_2 \\ 2x_1 + 4x_2 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ x_1 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 2x_1 - 3x_2 \\ -4x_1 + 6x_2 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3x_1 - 2x_1 \\ x_1 - x_2 \end{bmatrix}$$

$$\Box T \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -3x_1 - 2x_1 \\ x_1 - x_2 \end{bmatrix}$$

+1/6/55+

9 Let

$$A = \begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 2 \\ 2 & 1 & 3 \end{bmatrix},$$

and consider the system $A\mathbf{x} = \mathbf{0}$. How many free variables does the system have?

10 **&** Which of the following statements are true? Choose all that apply.

- \bigcirc A set of two vectors is linearly independent if the vectors are not multiples of each other.
 - Linear independence does not apply if a set contains only one vector.

A set of 3 vectors in \mathbb{R}^5 must be linearly independent as long as they do not contain the zero vector.

Any set containing the zero vector is linearly dependent.

] A set of 5 vectors in \mathbb{R}^3 can be linearly independent if none of the vectors is the zero vector, and none of the vectors are multiples of each other.

+1/7/54+

 $\mathbf{7}$ Administrative Use Only Solve $\begin{vmatrix} 1 & 0 & -3 & 8 \\ 2 & 2 & 9 & 7 \\ 0 & 1 & 5 & -2 \end{vmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & 8 \\ 0 & 2 & 15 & -9 \\ 0 & 1 & 5 & -2 \end{vmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 1 & 5 & -2 \end{vmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 2 & 15 & -9 \\ 0 & 2 & 15 & -9 \end{vmatrix}$ $\begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 5 & -2 \\ 0 & 0 & 5 & -5 \end{bmatrix} \begin{array}{c} \chi_1 = 3(-1) + 8 = 5 \\ \chi_2 = -2 - 5(-1) = 3 \\ \chi_3 = -1 \end{array}$

Part II: Justify your answer and show all work for full credit.

Typo Calculation:

$$\begin{bmatrix} 1 & 0 & -3 & 8 \\ 2 & 11 & 0 & |7 \\ 0 & 6 & 1 & |7 \\ 0 & 6 & 0 & |7 \\ 0 & 6 & 0 & -2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & -3 & 8 \\ 0 & 1 & 0 & -1/3 \\ 0 & 1 & 0 & -1/3 \\ 0 & 1 & 0 & -1/3 \\ x_{2} = -\frac{1}{3} \\ x_{3} = -\frac{1}{3} \\ x_{5} = -\frac{1}{3} \end{bmatrix} x_{5} = \frac{1}{3}$$

Find the *reduced row echelon form* for

Determine if the columns of the following matrix A span \mathbb{R}^4 .

$$A = \begin{bmatrix} 7 & 2 & -5 & 8 \\ -5 & -3 & 4 & -9 \\ 6 & 10 & -2 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 4 \\ -5 & -3 & 4 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

$$\begin{bmatrix} 7 & 2 & -5 & 7 \\ -7 & 9 & 2 & 15 \end{bmatrix}$$

Find all solutions to the homogeneous system $A\mathbf{x} = \mathbf{0}$. Write your answer in parametric vector form.

Suppose { V, V2, V3] is a LD set. Then, there are constants Ci, Cz, C3 (at least lof which is not 0) for which

 $c, \underline{\vee}, + (\underline{\vee}_2 + \underline{C}_3 \underline{\vee}_3 = 0$.

Therefore,

$$C_1 \underline{\vee}_1 + C_2 \underline{\vee}_2 + C_3 \underline{\vee}_3 + O \underline{\vee}_4 = 0,$$

and at least one of the coef. 13 not O. Thus, {V, , V2, V3, V4} 13LD, a contradiction.

Let $T: \mathbb{R}^3 \to \mathbb{R}^4$ be a linear transformation given by

$$T\begin{pmatrix} x_{1} \\ x_{2} \\ x_{3} \end{pmatrix} = \begin{bmatrix} 2x_{1} - x_{2} + x_{3} \\ x_{1} \\ x_{1} + x_{2} - 4x_{3} \\ 3x_{1} - 3x_{2} + 2x_{3} \end{bmatrix}.$$

matrix of *T*.

I) Find the standard matrix of T.

II) Is T one to one? Justify your answer.

Row reduction of the matrix gives

$$\begin{bmatrix} 1 - 1 & 1 \\ 0 & 1 - 1 \\ 0 & 2 - 5 \\ 0 & -1 \end{bmatrix} \sim \begin{bmatrix} 1 - 1 & 1 \\ 0 & 1 - 1 \\ 0 & 0 - 3 \\ 0 & 0 - 1 \end{bmatrix}$$
Each col is a pivot col., so T isi-i

III) Is T onto? Justify your answer.

Not every row is a pivot row, so Tis not outo.