			_		

+1/1/60+

001

Math 313 Exam 2 May 26,27, 2015

Name:
Section:
Instructor:

Encode your BYU ID in the grid below.

	v					0		
0	0	0	0	0	0	0	0	0
1	1	1]1[$\boxed{1}$	1	1	1	1
2	2	2	2	2	2	2	2	$\Box 2$
3	3	3	3	3	3	3	3	3
4	4	4	4	4	4	4	4	$\Box 4$
5	5	5	5	5	5	5	5	5
6	6	6	6	6	6	6	6	6
7	7	7	7	7	7	7	7	7
8	8	8	8	8	8	8	8	8
9	9	9	9	9	9	9	9	9

Instructions

- I) Do not write on the barcode area at the top of each page, or near the four circles on each page.
- **II**) Fill in the correct boxes for your BYU ID and for the correct answer on the multiple choice completely. Multiple choice questions are 4 points each.
- **III**) Multiple choice questions that have more than one correct answer will be marked with a **\$**. All other questions have only one correct answer.
- ${\bf IV})$ For questions which require a written answer, show all your work in the space provided and justify your answer.
- **V**) Simplify your answers.
- **VI**) Scientific calculators are allowed.
- $\mathbf{VII})~$ No books or notes are allowed.
- **VIII**) There is no time limit on this exam.

+1/2/59+

-

Part I: Multiple Choice Questions: Questions marked with a A have more than one correct answer. Mark all correct answers. The other questions have one right answer. (4 points each)

1 Let A, B and C be $3 \times 5, 5 \times 3$ and 5×5 matrices, respectively. Select the statements below that make sense. Mark all that apply.

$$ABC$$

$$ABC - (CB)^{T}$$

$$AB - BA = 0$$

$$ACB^{T}$$

$$BAC$$

2 Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 1 & 4 \\ 0 & 0 & 1 \end{bmatrix}, \text{ and } \mathbf{v} = \begin{bmatrix} 1 \\ 2 \\ -3 \end{bmatrix}$$

What is the first entry of $A^{-1}\mathbf{v}$?

$$\begin{bmatrix} -12 \\ 12 \\ 0 \\ 10 \\ -10 \\ 0 \\ -10 \\ -10 \\ -19 \\ X \\ -18 \\ \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 & | & | & 0 & 6 \\ 0 & | & 0 & | & 0 \\ 0 & | & 0 & | & 0 \\ 0 & | & 0 & | & 0 \\ 0 & | & 0 & | & 0 \\ 0 & | & 0 & | & 0 \\ 0 & | & 0 & | & -2 \\ 0 &$$

 $A^T \mathbf{x} = \mathbf{b}$ can have more than one solution while $A \mathbf{x} = \mathbf{b}$ has only one.

If A and B are invertible, AB is invertible, and $(AB)^{-1} = A^{-1}B^{-1}$.

If $A\mathbf{x} = \mathbf{0}$ has only the solution $\mathbf{x} = \mathbf{0}$, then A is invertible.

] AB can be invertible when A is not.

If A is invertible, the rows of A form a linearly independent set.

4 Let

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 - 5 & 5 \\ 7 & 8 & -3 \end{bmatrix}.$$

find the cofactor C_{23} of A.

6 Let $S : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear transformation whose standard matrix is A, and $T : \mathbb{R}^2 \to \mathbb{R}^2$ a linear transformation whose standard matrix is B. If V is a parallelogram in \mathbb{R}^2 whose area if L, then the area of T(S(V)) is

 $\begin{array}{|c|c|c|c|} & L & |\det (BA)| \\ \hline & L \\ \hline & L & |\det B| \\ \hline & |\det A \ \det B| \\ \hline & L \ \det A \ \det B \\ \hline & L \ \det A \ \det A \\ \hline & L \ \det A \end{array}$

7 **♣** Which of the following subsets of \mathbb{R}^4 are subspaces of \mathbb{R}^4 ?

- $\boxed{} \{t\mathbf{v}:\mathbf{t}\in\mathbb{R}\} \text{ where } \mathbf{v}\neq\mathbf{0}$
- $[] \{0\}$
- \Box {**u**, **v**} where **u** and **v** are distinct nonzero vectors
- $\left| \left\{ t\mathbf{v} + s\mathbf{u} : t, s \in \mathbb{R} \right\} \text{ for } \mathbf{v} \neq \mathbf{0} \text{ and } \mathbf{u} \neq \mathbf{0} \right|$

8 The null space of a 4×5 matrix is a subspace of \mathbb{R}^k for

	Τ			

+1/6/55+

9 The reduced row echelon form of $A = \begin{bmatrix} 1 & 2 & 6 & 1 & -4 & 2 \\ 1 & 1 & 3 & 1 & -2 & 2 \\ 1 & 1 & 3 & 1 & -2 & 1 \end{bmatrix}$ is $U = \begin{bmatrix} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 3 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$. Which columns of A form a basis for the column space of A? \square Columns 1, 4, 6 \square Columns 1, 4, 6 \square Columns 1, 2, 6 \square Columns 1, 2, 3 \square Columns 1, 2, 4

10 A basis for \mathbb{R}^2 is $\mathcal{B} = \{\mathbf{b}_1, \mathbf{b}_2\}$ where $\mathbf{b}_1 = \begin{bmatrix} 2\\ -1 \end{bmatrix}$ and $\mathbf{b}_2 = \begin{bmatrix} 1\\ 2 \end{bmatrix}$. The \mathcal{B} coordinates of $\mathbf{v} = \begin{bmatrix} 3\\ 1 \end{bmatrix}$ are $\begin{bmatrix} 2 & 1 & 3\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_1} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 1 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -1\\ -1 & 2 & 2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & 2 & 2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & 2 & 2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & 2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 & -2 \end{bmatrix} \xrightarrow{\mathbf{a}_2} \begin{bmatrix} 1 & -2 & -2 & -2 \\ -1 & -2 & -2 &$

					ſ

+1/7/54+

b) Solve the system
$$C\mathbf{x} = \mathbf{b}$$
 where $\mathbf{b} = \begin{bmatrix} 1\\ 2\\ -3 \end{bmatrix}$.
 $\chi = \begin{bmatrix} 1 & -1 & 0\\ -1 & 1 & 1\\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} 2\\ -2\\ -2\\ -2\\ -4 \end{bmatrix}$.

Without calculating the inverses directly, use a property of the invertible matrix theorem to show whether the following matrices are invertible. Use a different property for each matrix, and state the property you are using.

a)
$$A = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & -2 \end{bmatrix}$$

$$def(A) = \left| \begin{array}{c} 1 \\ 1 \\ -2 \end{array} \right| + \left| \begin{array}{c} 0 \\ 1 \\ 1 \end{array} \right| = -3 - 1 = -4 \pm 0$$

Invertible bacquese dut is not 0.

b)
$$B = \begin{bmatrix} 3 & -7 & 2 \\ 1 & -1 & 5 \\ 1 & -5 & -8 \end{bmatrix}$$

$$\begin{bmatrix} 1 & -1 & 5 \\ 3 & -7 & 2 \\ 1 & -5 & -8 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 5 \\ 0 & -4 & -13 \\ 0 & -4 & -13 \end{bmatrix} \sim \begin{bmatrix} 1 & -1 & 5 \\ 0 & -4 & -13 \\ 0 & 0 & 0 \end{bmatrix}$$

Only 2 pivets so not invertible

b) For an $n \times n$ matrix A, prove that if $A^3 = 0$, then det A = 0.

5

det (A)=det (A) det (A) det (A) = det (A) = 0, so det (A) = 0 (by taking the cube root of both sides.)

$$C_{11} = -1 C_{12} = 1 C_{13} = 1 \qquad [A[= C_{21} + C_{23} = -1 +] = 6$$

$$C_{21} = -1 C_{22} = -5 C_{23} = 7 \qquad A = [A] = [-1 - 1 - 5]$$

$$C_{31} = 5 C_{32} = 1 C_{33} = -5 \qquad A = [A] = [-1 - 1 - 5]$$

$$C_{31} = 5 C_{32} = 1 C_{33} = -5 \qquad A = [A] = [A] = [-1 - 1 - 5]$$

$$C_{31} = 5 C_{32} = 1 C_{33} = -5 \qquad A = [A] = [A] = [A] = [A] = [A] = [A]$$

