
Math 313 (Linear Algebra)
Final Exam Practice KEY

Part I: Multiple Choice Questions: Mark the correct answers for each question

1. Find a basis of W⊥ where W has basis B = {(1, 1, 1, 1)T , (1, 2, 0, 0)T}.
Solution: We need to find all vectors (a, b, c, d)T whose dot product with the vectors above
is 0. This leads to

a+ b+ c+ d = 0,

and
a+ 2b = 0.

In augmented matrix form we have[
1 1 1 1 0
1 2 0 0 0

]
,

[
1 1 1 1 0
0 1 −1 −1 0

]
[
1 0 2 2 0
0 1 −1 −1 0

]
We see that c and d are free variables and that a = −2c− 2d, b = c+ d. Thus,

(a, b, c, d)T = (−2c− 2d, c+ d, c, d)T = c(−2, 1, 1, 0)T + d(−2, 1, 0, 1)T .

2. A certain experiment produces the data points (4, 8), (9, 15), and (16, 24). These data points
lie on a curve of the form

y = β0x+ β1
√
x.

The parameters β0 and β1 can be found by solving which of the following matrix equations:

a)

[
4 9 16
2 3 4

] 8
15
24

 =

[
β0
β1

]
b)

 4 2
9 3
16 4

[β0
β1

]
=

 8
15
24



c)

1 4
1 9
1 16

[β0
β1

]
=

 8
15
24

 d)

1 8
1 15
1 24

[β0
β1

]
=

 4
9
16


Solution: b). We have that 4 2

9 3
16 4

[β0
β1

]
=

 β0 · 4 + β1 ·
√

4

β0 · 9 + β1 ·
√

9

β0 · 16 + β1 ·
√

16

 .
In other words, the components of the vector above are the y-coordinates of the points on the
curve with x-coordinates 4, 9, and 16. Since the data points observed all lie on this curve, this
vector should equal the vector consisting of all the y-coordinates, i.e. 4 2

9 3
16 4

[β0
β1

]
=

 β0 · 4 + β1 ·
√

4

β0 · 9 + β1 ·
√

9

β0 · 16 + β1 ·
√

16

 =

 8
15
24

 .



3. Which of the following is FALSE?

a) Symmetric matrices are always diagonalizable.

b) Symmetric matrices are always invertible.

c) Eigenvectors of a symmetric matrix which come from different eigenspaces must be or-
thogonal.

d) Eigenvectors of a symmetric matrix which come from different eigenspaces must be lin-
early independent.

Solution: b) is false (and hence the correct answer). The zero matrix is symmetric, but is
never invertible. a) and c) are true by Theorems 1 and 2 in Section 7.1. d) is true by Theorem
2 of Section 5.1.



4. Select the matrix corresponding to the quadratic form

Q(x1, x2, x3, x4) = −2x21 + 5x22 − 7x23 − 4x24 − 6x1x2 + 4x3x1 − 10x1x4

a)


−2 5 −7 −4

2 3 4 −10
5 −7 −4 −6
2 −3 −5 0

 b)


−2 −3 2 −5
−3 5 0 0

2 0 −7 0
−5 0 0 −4



c)


−2 −6 4 −10
−6 5 0 0

4 0 −7 0
−10 0 0 −4

 d)


−2 −6 4 −10

0 5 0 0
0 0 −7 0
0 0 0 −4


Solution: b).

5. Which of the sets is orthogonal under the given inner product on C[0, π]?

〈f, g〉 =

∫ π

0

f(x)g(x)dx

a) {1, sinx} b) {1, cosx}

c) {1,−1} d) {sinx, cosx}

Solution: b) and d). We can compute

〈1, sinx〉 =

∫ π

0

1 · sinx dx = − cos π + cos 0 = 2

〈1, cosx〉 =

∫ π

0

1 · cosx dx = sinπ − sin 0 = 0

〈1,−1〉 =

∫ π

0

1 · (−1) dx = −π + 0 = −π

〈cosx, sinx〉 =

∫ π

0

cosx · sinx dx = 1
2
(cos π)2 − 1

2
(cos 0)2 = 0

where the last integral is computed using a change of variables u = sinx and du = cosx dx.



6. Let A be a symmetric matrix. Eigenvectors of A which correspond to distinct eigenvalues are
always

a) Linearly Independent b) Orthogonal

c) Nonzero d) All of the above

Solution: a), b), c) and d) are all correct. c) is correct by the definition of an eigenvector.

7. Let Q(x) = xTAx be a quadratic form, with A a symmetric matrix. Which statements are
always true?

a) Q is positive definite b) Introducing a new variable by setting x =
Py allows eliminating mixed terms.

c) A is orthogonally diagonalizable. d) If A = BTB then A is positive semidefi-
nite.

e) If A = BTB then A is positive definite.

Solution: b), c), and d) are true. Note that d) is true because if A = BTB, then for any x
we have

Q(x) = xTAx = xTBTBx = (Bx)T (Bx) = (Bx) · (Bx) = ‖Bx‖2 ≥ 0.

Notice this only proves that the quadratic form Q is positive semidefinite, because if x is a
nontrivial element of Nul B, then Q(x) = ‖Bx‖2 = ‖0‖2 = 0, even though x 6= 0.

8. Let A and B be n× n matrices. Which of the following is FALSE?

a) det(AB) = detA detB b) det(AT ) = detA

c) det(A−1) = detA d) det(kA) = kn detA

Solution: c) is false. Indeed, if A is an invertible matrix then

det(A−1) =
1

detA
.



9. What is the minimum value of xTAx subject to xTx=1, if A =

[
2 5
5 2

]
a) 0 b) −3 c) 3 d) −7 e) 7

Solution: b). The eigenvalues of A are 7 and −3. The minimum value of the Q along the
unit circle will be the smallest eigenvalue, i.e. λ = −3.

Part II: Fill in the blank with the best possible answer. (x points each.)

10. The Cauchy-Schwarz Inequality states that for all u,v in a vector space V , |〈u,v〉| ≤
‖u‖‖v‖ .

11. Let A,B, and C be invertible n× n matrices. Then the inverse of AB−1CTA−1B is equal to
B−1A(C−1)TBA−1 .



Part III: Justify your answer and show all work for full credit.

12. Find a basis of W⊥ where W has basis B =




1
1
1
1

 ,


1
2
0
0


.

Solution: Let A be the matrix whose rows are the vectors in the basis B, i.e.

A =

[
1 1 1 1
1 2 0 0

]
.

Then W = Row A, and W⊥ = (Row A)⊥ = Nul A. Row reducing gives[
1 0 2 2
0 1 −1 −1

]
and hence a basis for Nul A = W⊥ is given by


−2

1
1
0

 ,

−2

1
0
1


 .

13. Find the equation of the least-squares line that best fits the data points (−1,−2), (0, 1), (1, 1), (2, 1),
and (3, 4).

Solution: The design matrix is given by

X =


1 −1
1 0
1 1
1 2
1 3



while we have β =

[
β0
β1

]
and y =


−2

1
1
1
4

. The normal equations XTXβ = XTy give

XTXβ =

[
5 5
5 15

] [
β0
β1

]
=

[
5
17

]
= XTy.

Solving gives β =

[
−1/5

6/5

]
. Thus the equation of the least squares line is

y = −1

5
+

6

5
x.



14. The matrix A =

 −1 1 −1
1 −1 −1
−1 −1 −1

 has eigenvalues -2 and 1. Find an orthogonal matrix P

and a diagonal matrix D such that A = PDP T .

Solution: The characteristic polynomial of A is given by

det(A− λI) =

∣∣∣∣∣∣
−1− λ 1 −1

1 −1− λ −1
−1 −1 −1− λ

∣∣∣∣∣∣ = −λ3 − 3λ2 + 4.

By inspection we can guess that one root will be λ1 = 1, and hence

det(A− λI) = (λ− 1)(−λ2 − 4λ− 4) = −(λ− 1)(λ+ 2)2.

Thus the eigenvalues of A are λ1 = 1 and λ2 = λ3 = −2. Finding a unit eigenvector for
λ1 = 1:

A− I =

−2 1 −1
1 −2 −1
−1 −1 −2


which row reduces to 1 0 1

0 1 1
0 0 0


and hence we get a corresponding unit eigenvector

u1 =

−
1√
3

− 1√
3
1√
3

 .
Finding unit eigenvectors for λ2 = λ3 = −2:

A+ 2I =

 1 1 −1
1 1 −1
−1 −1 1


which row reduces to 1 1 −1

0 0 0
0 0 0


and hence we get corresponding eigenvectors

x2 =

−1
1
0

 , and x3 =

1
0
1

 .
Notice that these vectors are not orthogonal to each other (though both x2 and x3 are or-
thogonal to the other eigenvector u1, which is guaranteed because A is symmetric). Thus we
perform Gram-Schmidt to the vectors x1 and x2 to make them orthogonal to each other:

v2 =x2 =

−1
1
0


v3 =x3 −

v2 · x3

v2 · v2

v2 =

1
0
1

− −1

2

−1
1
0

 =

1/2
1/2

1

 .



Normalizing these vectors gives orthonormal eigenvectors

u2 =

−
1√
2

1√
2

0

 , and u3 =


1√
6
1√
6
2√
6

 .
Thus

P =

−
1√
3
− 1√

2
1√
6

− 1√
3

1√
2

1√
6

1√
3

0 2√
6

 and D =

1 0 0
0 −2 0
0 0 −2

 .
We can easily check that P−1 = P T and that A = PDP T .

15. Let W be the subspace of P2 spanned by {t, t2}. Find the orthogonal projection of 1 onto W
using the inner product

〈p, q〉 = p(−1)q(−1) + p(0)q(0) + p(1)q(1).

Solution: First we compute

〈t, t2〉 = (−1) · (−1)2 + (0) · (0)2 + (1) · (1)2 = 0

and hence t and t2 are orthogonal with respect to this inner product. Hence we can use this
basis for W to compute the orthogonal projection of 1 to W (if they weren’t orthogonal, we
would have to use Gram-Schmidt to make them orthogonal to each other before proceeding).
Then

projW 1 =
〈1, t〉
〈t, t〉

t+
〈1, t2〉
〈t2, t2〉

t2,

where

〈t, t〉 = (−1) · (−1) + (0) · (0) + (1) · (1) = 2

〈t2, t2〉 = (−1)2 · (−1)2 + (0)2 · (0)2 + (1)2 · (1)2 = 2

〈1, t〉 = 1 · (−1) + 1 · (0) + 1 · (1) = 0

〈1, t2〉 = 1 · (−1)2 + 1 · (0)2 + 1 · (1)2 = 2.

Hence

projW 1 =
0

2
t+

2

2
t2 = t2.

16. Prove that if λ is an eigenvalue of the matrix A, then λ2 is an eigenvalue of the matrix A2.

Solution: If λ is an eigenvalue of A, with corresponding eigenvector v, then by definition
Av = λv. Multiplying this equation by A on both sides gives

A2v = A(λv)

= λ(Av)

= λ(λv)

= λ2v.

Thus A2v = λ2v, and hence λ2 is an eigenvalue of A2.



17. Compute the eigenvalues and eigenvectors corresponding the matrix

[
0 1
−1 0

]
.

Solution: Computing the characteristic polynomial gives

det(A− λI) =

∣∣∣∣ −λ 1
−1 −λ

∣∣∣∣ = λ2 + 1 = (λ− i)(λ+ i).

Thus the eigenvalues are λ1 = i and λ2 = −i. To compute the eigenvector associated to
λ1 = i, we look for a vector in Nul (A− iI):

A− iI =

[
−i 1
−1 −i

]
.

We could try to row reduce this matrix to find a basis for it’s null space, but we could also take
a shortcut by observing that the first and second rows must be scalar multiples of each other
(otherwise, the two rows would be linearly independent, and hence the matrix A− iI would
be invertible and have trivial null space). So we know we can cancel the second row using the
first row (indeed the second row is −i times the first row). Note that this shortcut only works
for 2 × 2 matrices, any bigger and we’d have to do real row-reduction. Thus −ix1 + x2 = 0
and the eigenvector we’re looking for is

v1 =

[
1
i

]
.

We could do the same thing to find the second eigenvector, but we don’t have to since it will
be the complex conjugate of v1:

v2 = v1 =

[
1
i

]
=

[
1
−i

]
.

18. Prove that similar matrices have the same determinant.

Solution: Let A and B be similar matrices. In other words, there is some invertible matrix
P such that A = PBP−1. Then

det(A) = det(PBP−1) = det(P ) det(B) det(P−1) = det(P ) det(B)
1

det(P )
= det(B).

19. Prove the Pythagorean Theorem: If u and v are orthogonal vectors in Rn, then

‖u + v‖2 = ‖u|2 + ‖v‖2

Solution: Since u and v are orthogonal, we have that u · v = 0. Hence

‖u + v‖2 = (u + v) · (u + v) = u · u + 2u · v + v · v = u · u + v · v = ‖u‖2 + ‖v‖2.



20. Let B =

{[
1
1

]
,

[
2
1

]}
. Note that B is a basis for R2. (You do not need to prove this.

(a) Find the change-of-coordinates matrix PB from the basis B to the standard basis.

Solution: From Section 4.4 we have that

PB =

[
1 2
1 1

]
.

(b) What is the equation relating x, [x]B, and PB?

Solution: x = PB[x]B.

(c) Find the vector x if [x]B =

[
2
3

]
Solution:

x = PB[x]B =

[
1 2
1 1

] [
2
3

]
=

[
8
5

]
.

(d) Use an inverse matrix to find [y]B if y =

[
1
4

]
.

Solution:

[y]B = P−1B y =

[
−1 2

1 −1

] [
1
4

]
=

[
7
−3

]
.

21. For given A and b compute all solutions x̂ of the least squares problem and the distance from
Ax̂ to b.

(a) A :=

1
0
1

 and b :=

1
1
1


Solution: Ax = b is inconsistent, so we find the least squares approximation by solving
the normal equation ATAx̂ = ATb, which gives 2x̂ = 2, and hence x̂ = 1. The distance
from Ax̂ to b is given by ∥∥∥∥∥∥

1
0
1

−
1

1
1

∥∥∥∥∥∥ = 1.

(b) A :=


1 0
0 1
1 0
0 1
1 0

 and b :=


1
2
3
2
1

.

Solution: The normal equations of the system Ax = b give[
3 0
0 2

]
x̂ =

[
5
4

]
.

and have solution

x̂ =

[
5/3
2

]
.



We have

‖Ax̂− b‖ =

∥∥∥∥∥∥∥∥∥∥


5/3
2

5/3
2

5/3

−


1
2
3
2
1


∥∥∥∥∥∥∥∥∥∥

=

√
8

3
.

(c) A :=

[
2 1
1 2

]
and b :=

[
3
6

]
.

Solution: The matrix A is invertible, hence the equation Ax = b has a unique solution
for all b:

x = A−1b =

 2
3
−1

3

−1
3

2
3

[3
6

]
=

[
0
3

]
.

Note that if you hadn’t noticed that A was invertible, and still used the normal equations
to solve for your least squares approximation, you still would have gotten the same
answer. In this case the least squares approximation will be an exact solution.

22. Find the inverse of the matrix

A =

−3 4 0
−2 3 0
−2 2 1


using any method of your choosing.

Solution: One could either row reduce the augmented matrix
[
A I

]
to obtain

[
I A−1

]
,

or could use the adjugate formula. The matrix of cofactors is 3 2 2
−4 −3 −2

0 0 −1

 .
Doing cofactor expansion of detA along the right hand column shows that detA = −1. The
transpose of the cofactor matrix is the adjugate of A:

adj A =

 3 −4 0
2 −3 0
2 −2 −1

 ,
and

A−1 =
1

detA
adj A =

 −3 4 0
−2 3 0
−2 2 1

 .

23. Let A,C, and D be n× n matrices, with CA = I and AD = I. Prove that C = D.

Solution: Suppose that CA = I and AD = I. Then

C = CI = C(AD) = (CA)D = ID = D.



24. Let A be the transpose of B :=

−3 1
6 −2
6 −2

. Find U , V , D and Σ for an SVD of A and prove

its correctness.

Solution: We start by computing the eigenvalues and eigenvectors of

BTB =

[
81 −27
−27 9

]
,

which has characteristic polynomial

det(BTB − λI) = λ(λ− 90),

and hence λ1 = 90 and λ2 = 0. Thus the singular values of B are σ1 =
√

90 and σ2 = 0, and

Σ =

√90 0
0 0
0 0

 .
We subtract λ1 and λ2 off the diagonal of BTB to find the corresponding eigenvectors, which
are

v1 =

[
− 3√

10
1√
10

]
and v2 =

[
1√
10
3√
10

]
.

Thus

V =

[
− 3√

10
1√
10

1√
10

3√
10

]
.

The columns of U can be computed

u1 =
1

σ1
Bv1 =

1√
90

 −3 1
6 −2
6 −2

[− 3√
10
1√
10

]
=


1
3

−2
3

−2
3

 .
The second and third columns of U can’t be computed in this way, since we only have one
nonzero singular value. We thus need to extend u1 to an orthonormal basis of R3. To
find two vectors orthogonal to u1, place u1 as the row of a matrix A, and find a basis for
Nul A = (Row A)⊥. This gives us vectors

x2 =

2
1
0

 and x3 =

2
0
1

 .
Note that both of these vectors are orthogonal to u1, but they are not orthogonal to each
other (and are not unit vectors). So we apply Gram-Schmidt to these two vectors to give a
pair of orthogonal vectors y2 and y3:

y2 = x2

y3 = x3 −
x3 · y2

y2 · y2

y2 =


2
5

−4
5

1





Normalizing the vectors y2 and y3 give

u2 =


2√
5

1√
5

0

 , and u3 =


2

3
√
5

− 4
3
√
5

√
5
3

 ,

and hence

U =


1
3

2√
5

2
3
√
5

−2
3

1√
5
− 4

3
√
5

−2
3

0
√
5
3

 .
It is easy to verify that both V and U are orthogonal, and that A = UΣV T as required.

END OF EXAM


