Practice Test 4/13/15 for 313 sections 04/05

Part I: Multiple Choice Questions: Mark the correct answers for each question

1. Find a basis of W^{\perp} where W has basis $B:=\left\{[1,1,1,1]^{T},[1,2,0,0]^{T}\right\}$
2. A certain experiment produces the data points $(4,8),(9,15)$, and $(16,24)$. These data points lie on a curve of the form

$$
y=\beta_{0} x+\beta_{1} \sqrt{x}
$$

The parameters β_{0} and β_{1} can be found by solving which of the following matrix equations:
a) $\left[\begin{array}{ccc}4 & 9 & 16 \\ 2 & 3 & 4\end{array}\right]\left[\begin{array}{c}8 \\ 15 \\ 24\end{array}\right]=\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]$
b) $\left[\begin{array}{cc}4 & 2 \\ 9 & 3 \\ 16 & 4\end{array}\right]\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{c}8 \\ 15 \\ 24\end{array}\right]$
c) $\left[\begin{array}{cc}1 & 4 \\ 1 & 9 \\ 1 & 16\end{array}\right]\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{c}8 \\ 15 \\ 24\end{array}\right]$
d) $\left[\begin{array}{cc}1 & 8 \\ 1 & 15 \\ 1 & 24\end{array}\right]\left[\begin{array}{l}\beta_{0} \\ \beta_{1}\end{array}\right]=\left[\begin{array}{c}4 \\ 9 \\ 16\end{array}\right]$
3. Which of the following is FALSE?
a) Symmetric matrices are always diagonalizable.
b) Symmetric matrices are always invertible.
c) Eigenvectors of a symmetric matrix which come from different eigenspaces must be orthogonal.
d) Eigenvectors of a symmetric matrix which come from different eigenspaces must be linearly independent.
4. Select the matrix corresponding to the quadratic form

$$
\begin{array}{cc}
Q\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=-2 x_{1}^{2}+5 x_{2}^{2}-7 x_{3}^{2}-4 x_{4}^{2}-6 x_{1} x_{2}+4 x_{3} x_{1}-10 x_{1} x_{4} \\
\text { a) }\left[\begin{array}{cccc}
-2 & 5 & -7 & -4 \\
2 & 3 & 4 & -10 \\
5 & -7 & -4 & -6 \\
2 & -3 & -5 & 0
\end{array}\right] & \text { b) }\left[\begin{array}{ccc}
-2 & -3 & 2 \\
-3 & 5 & 0 \\
0 \\
2 & 0 & -7 \\
-5 & 0 & 0 \\
-4
\end{array}\right] \\
\text { c) }\left[\begin{array}{cccc}
-2 & -6 & 4 & -10 \\
-6 & 5 & 0 & 0 \\
4 & 0 & -7 & 0 \\
-10 & 0 & 0 & -4
\end{array}\right] & \text { d) }\left[\begin{array}{cccc}
-2 & -6 & 4 & -10 \\
0 & 5 & 0 & 0 \\
0 & 0 & -7 & 0 \\
0 & 0 & 0 & -4
\end{array}\right]
\end{array}
$$

5. Which of the sets is orthogonal under the given inner product on $C[0, \pi]$?

$$
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x
$$

a) $\{1, \sin x\}$
b) $\{1, \cos x\}$
c) $\{1,-1\}$
d) $\{\sin x, \cos x\}$
6. Let $Q(x)=x^{T} A x$ be a quadratic form, with A a symmetric matrix. Which statements are always true?
a) Q is positive definite
b) Introducing a new variable by setting $x=$ $P y$ allows eliminating mixed terms.
c) A is orthogonally diagonalizable.
d) If $A=B^{T} B$ then A is positive semidefinite.
e) If $A=B^{T} B$ then A is positive definite.
7. Let A and B be $n \times n$ matrices. Which of the following is FALSE?
a) $\operatorname{det}(A B)=\operatorname{det} A \operatorname{det} B$
b) $\operatorname{det}\left(A^{T}\right)=\operatorname{det} A$
c) $\operatorname{det}\left(A^{-1}\right)=\operatorname{det} A$
d) $\operatorname{det}(k A)=k^{n} \operatorname{det} A$
8. What is the minimum value of $\mathbf{x}^{T} A \mathbf{x}$ subject to $\mathbf{x}^{T} \mathbf{x}=1$, if $A=\left[\begin{array}{ll}2 & 5 \\ 5 & 2\end{array}\right]$
a) 0
b) -3
c) 3
d) $\quad-7$
e) 7

Part II: Fill in the blank with the best possible answer. (x points each.)
9. The Cauchy-Schwarz Inequality states that for all \mathbf{u}, \mathbf{v} in a vector space V, \qquad \leq
\qquad .
10. Let A, B, and C be invertible $n \times n$ matrices. Then the inverse of $A B^{-1} C^{T} A^{-1} B$ is equal to
\qquad .

Part III: Justify your answer and show all work for full credit.
11. Find the equation of the least-squares line that best fits the data points $(-1,-2),(0,1),(1,1),(2,1)$, and $(3,4)$.
12. The matrix $A=\left[\begin{array}{rrr}-1 & 1 & -1 \\ 1 & -1 & -1 \\ -1 & -1 & -1\end{array}\right]$ has eigenvalues -2 and 1. Find an orthogonal matrix P and a diagonal matrix D such that $A=P D P^{T}$.
13. Let W be the subspace of \mathbb{P}_{2} spanned by $\left\{t, t^{2}\right\}$. Find the orthogonal projection of 1 onto W using the inner product

$$
\langle p, q\rangle=p(-1) q(-1)+p(0) q(0)+p(1) q(1) .
$$

14. Prove that if λ is an eigenvalue of the matrix A, then λ^{2} is an eigenvalue of the matrix A^{2}.
15. Compute the eigenvalues and eigenvectors corresponding the matrix $\left[\begin{array}{rr}0 & 1 \\ -1 & 0\end{array}\right]$.
16. Prove that similar matrices have the same determinant.
17. Prove the Pythagorean Theorem: If \mathbf{u} and \mathbf{v} are orthogonal vectors in \mathbb{R}^{n}, then

$$
\|\mathbf{u}+\mathbf{v}\|^{2}=\left\|\left.\mathbf{u}\right|^{2}+\right\| \mathbf{v} \|^{2}
$$

18. Let $\mathcal{B}=\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$. Note that \mathcal{B} is a basis for \mathbb{R}^{2}. (You do not need to prove this.
(a) Find the change-of-coordinates matrix $P_{\mathcal{B}}$ from the basis \mathcal{B} to the standard basis.
(b) What is the equation relating $\mathbf{x},[\mathbf{x}]_{\mathcal{B}}$, and $P_{\mathcal{B}}$?
(c) Find the vector \mathbf{x} if $[\mathbf{x}]_{\mathcal{B}}=\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(d) Use an inverse matrix to find $[\mathbf{y}]_{\mathcal{B}}$ if $y=\left[\begin{array}{l}1 \\ 4\end{array}\right]$.
19. For given A and \mathbf{b} compute all solutions $\hat{\mathbf{x}}$ of the least squares problem and $\operatorname{dist}(A \hat{\mathbf{x}}, \mathbf{b})$.
(a) $A:=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ and $\mathbf{b}:=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$
(b) $A:=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0\end{array}\right]$ and $\mathbf{b}:=\left[\begin{array}{l}1 \\ 2 \\ 3 \\ 2 \\ 1\end{array}\right]$.
(c) $A:=\left[\begin{array}{ll}2 & 1 \\ 1 & 2\end{array}\right]$ and $\mathbf{b}:=\left[\begin{array}{l}3 \\ 6\end{array}\right]$.
20. Find the inverse of the matrix

$$
A=\left[\begin{array}{lll}
-3 & 4 & 0 \\
-2 & 3 & 0 \\
-2 & 2 & 1
\end{array}\right]
$$

using any method of your choosing.
21. Let A, C, and D be $n \times n$ matrices, with $C A=I$ and $A D=I$. Prove that $C=D$.
22. Let A be the transpose of $B:=\left[\begin{array}{cc}-3 & 1 \\ 6 & -2 \\ 6 & -2\end{array}\right]$. Find U, V, D and Σ for an SVD of A and prove its correctness.

