Practice Test 4/13/15 for 313 sections 04/05

Part I: Multiple Choice Questions: Mark the correct answers for each question

- 1. Find a basis of W^{\perp} where W has basis $B := \{[1, 1, 1, 1]^T, [1, 2, 0, 0]^T\}$
- 2. A certain experiment produces the data points (4,8), (9,15), and (16,24). These data points lie on a curve of the form

$$y = \beta_0 x + \beta_1 \sqrt{x}$$

The parameters β_0 and β_1 can be found by solving which of the following matrix equations:

a)
$$\begin{bmatrix} 4 & 9 & 16 \\ 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 8 \\ 15 \\ 24 \end{bmatrix} = \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix}$$

b)
$$\begin{bmatrix} 4 & 2 \\ 9 & 3 \\ 16 & 4 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 8 \\ 15 \\ 24 \end{bmatrix}$$

c)
$$\begin{bmatrix} 1 & 4 \\ 1 & 9 \\ 1 & 16 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 8 \\ 15 \\ 24 \end{bmatrix}$$

d)
$$\begin{bmatrix} 1 & 8 \\ 1 & 15 \\ 1 & 24 \end{bmatrix} \begin{bmatrix} \beta_0 \\ \beta_1 \end{bmatrix} = \begin{bmatrix} 4 \\ 9 \\ 16 \end{bmatrix}$$

- 3. Which of the following is FALSE?
 - a) Symmetric matrices are always diagonalizable.
 - b) Symmetric matrices are always invertible.
 - c) Eigenvectors of a symmetric matrix which come from different eigenspaces must be orthogonal.
 - d) Eigenvectors of a symmetric matrix which come from different eigenspaces must be linearly independent.
- 4. Select the matrix corresponding to the quadratic form

$$Q(x_1, x_2, x_3, x_4) = -2x_1^2 + 5x_2^2 - 7x_3^2 - 4x_4^2 - 6x_1x_2 + 4x_3x_1 - 10x_1x_4$$

a)
$$\begin{bmatrix} -2 & 5 & -7 & -4 \\ 2 & 3 & 4 & -10 \\ 5 & -7 & -4 & -6 \\ 2 & -3 & -5 & 0 \end{bmatrix}$$
b)
$$\begin{bmatrix} -2 & -3 & 2 & -5 \\ -3 & 5 & 0 & 0 \\ 2 & 0 & -7 & 0 \\ -5 & 0 & 0 & -4 \end{bmatrix}$$
c)
$$\begin{bmatrix} -2 & -6 & 4 & -10 \\ -6 & 5 & 0 & 0 \\ 4 & 0 & -7 & 0 \\ -10 & 0 & 0 & -4 \end{bmatrix}$$
d)
$$\begin{bmatrix} -2 & -6 & 4 & -10 \\ 0 & 5 & 0 & 0 \\ 0 & 0 & -7 & 0 \\ 0 & 0 & 0 & -4 \end{bmatrix}$$

5. Which of the sets is orthogonal under the given inner product on $C[0, \pi]$?

$$\langle f,g \rangle = \int_0^\pi f(x)g(x)dx$$

a) $\{1, \sin x\}$ b) $\{1, \cos x\}$ c) $\{1, -1\}$ d) $\{\sin x, \cos x\}$

- 6. Let $Q(x) = x^T A x$ be a quadratic form, with A a symmetric matrix. Which statements are always true?
 - a) Q is positive definite b) Introducing a new variable by setting x = Py allows eliminating mixed terms.
 - c) A is orthogonally diagonalizable. d) If $A = B^T B$ then A is positive semidefinite.
 - e) If $A = B^T B$ then A is positive definite.
- 7. Let A and B be $n \times n$ matrices. Which of the following is FALSE?
 - a) $\det(AB) = \det A \det B$ b) $\det(A^T) = \det A$
 - c) $det(A^{-1}) = det A$ d) $det(kA) = k^n det A$

8. What is the minimum value of $\mathbf{x}^T A \mathbf{x}$ subject to $\mathbf{x}^T \mathbf{x} = 1$, if $A = \begin{bmatrix} 2 & 5 \\ 5 & 2 \end{bmatrix}$

a) 0 b) -3 c) 3 d) -7 e) 7

- 9. The Cauchy-Schwarz Inequality states that for all \mathbf{u}, \mathbf{v} in a vector space $V, ____ \leq$
- 10. Let A, B, and C be invertible $n \times n$ matrices. Then the inverse of $AB^{-1}C^{T}A^{-1}B$ is equal to

Part III: Justify your answer and show all work for full credit.

- 11. Find the equation of the least-squares line that best fits the data points (-1, -2), (0, 1), (1, 1), (2, 1),and (3, 4).
- 13. Let W be the subspace of \mathbb{P}_2 spanned by $\{t, t^2\}$. Find the orthogonal projection of 1 onto W using the inner product

$$\langle p,q\rangle = p(-1)q(-1) + p(0)q(0) + p(1)q(1).$$

- 14. Prove that if λ is an eigenvalue of the matrix A, then λ^2 is an eigenvalue of the matrix A^2 .
- 15. Compute the eigenvalues and eigenvectors corresponding the matrix $\begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$.
- 16. Prove that similar matrices have the same determinant.
- 17. Prove the Pythagorean Theorem: If **u** and **v** are orthogonal vectors in \mathbb{R}^n , then

$$\|\mathbf{u} + \mathbf{v}\|^2 = \|\mathbf{u}\|^2 + \|\mathbf{v}\|^2$$

18. Let $\mathcal{B} = \left\{ \begin{bmatrix} 1\\1 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$. Note that \mathcal{B} is a basis for \mathbb{R}^2 . (You do not need to prove this.

- (a) Find the change-of-coordinates matrix $P_{\mathcal{B}}$ from the basis \mathcal{B} to the standard basis.
- (b) What is the equation relating $\mathbf{x}, [\mathbf{x}]_{\mathcal{B}}$, and $P_{\mathcal{B}}$?
- (c) Find the vector \mathbf{x} if $[\mathbf{x}]_{\mathcal{B}} = \begin{bmatrix} 2\\ 3 \end{bmatrix}$
- (d) Use an inverse matrix to find $[\mathbf{y}]_{\mathcal{B}}$ if $y = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$.
- 19. For given A and **b** compute all solutions $\hat{\mathbf{x}}$ of the least squares problem and dist $(A\hat{\mathbf{x}}, \mathbf{b})$.

(a)
$$A := \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$$
 and $\mathbf{b} := \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix}$
(b) $A := \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 1 & 0 \\ 0 & 1 \\ 1 & 0 \end{bmatrix}$ and $\mathbf{b} := \begin{bmatrix} 1 \\ 2 \\ 3 \\ 2 \\ 1 \end{bmatrix}$.
(c) $A := \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and $\mathbf{b} := \begin{bmatrix} 3 \\ 6 \end{bmatrix}$.

20. Find the inverse of the matrix

$$A = \begin{bmatrix} -3 & 4 & 0 \\ -2 & 3 & 0 \\ -2 & 2 & 1 \end{bmatrix}$$

using any method of your choosing.

- 21. Let A, C, and D be $n \times n$ matrices, with CA = I and AD = I. Prove that C = D.
- 22. Let A be the transpose of $B := \begin{bmatrix} -3 & 1 \\ 6 & -2 \\ 6 & -2 \end{bmatrix}$. Find U, V, D and Σ for an SVD of A and prove its correctness.