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NOTE for this section

As always, (X , ‖ · ‖) is a Banach space.

Some results hold for general holomorphic functions of the form

f : U → X .

Some results hold only for holomorphic functions of the form

f : U → C.

We will be sure to indicate which it is in the results.
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Definition. For U a subset of C, a function f : U → X is bounded
if there exists M > 0 such that

‖f (z)‖X ≤ M for all z ∈ U.

Theorem 11.5.1 (Liouville’s Theorem). If f : C→ X is

• entire, and

• bounded,

then

• f is a constant function.
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Example 11.5.2. The entire functions cos(z) and sin(z) are
bounded but not constant when z ∈ R.

By Liouville’s Theorem they are not bounded on C.

You have HW (Exercise 11.20) to find sequences {zn} and {wn} in
C for which | sin(zn)| → ∞ and | cos(wn)| → ∞.

You are given a hint for sin(z) in Exercise 11.20, but here are some
better hints: for z = x + iy , there holds

sin(z) = sin x cosh y + i cos x sinh y ,

cos(z) = cos x cosh y − i sin x sinh y .
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What questions do you have?



Example. A complex Banach space is the complex vector space
Mn(C) equipped with the induced matrix norm ‖ · ‖∞. The
function f : C→ M2(C) defined by

f (z) =

[
1 0
0 z

]
is entire because for any z0 ∈ C we have

lim
z→z0

f (z)− f (z0)

z − z0
= lim

z→z0

1

z − z0

[
0 0
0 z − z0

]
=

[
0 0
0 1

]
.

The entire function f is not constant, and so by the contrapositive
of Liouville’s Theorem its norm is not bounded; explicitly we have

‖f (z)‖∞ = max{1, |z |} → ∞

as |z | → ∞.
This matrix valued function f is readily generalized to n ≥ 3.
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Definition. For U a subset of C, a function f : U → C is uniformly
bounded away from 0 if there exists ε > 0 such that |f (z)| ≥ ε for
all z ∈ U.

Corollary 11.5.3. If f : C→ C is entire and f is uniformly bounded
away from zero, then f is constant.

Connection with Liouville’s Theorem and restriction to
complex-valued entire functions:∣∣∣∣ 1

f (z)

∣∣∣∣ ≤ 1

ε
.

(Do not have multiplicative inverses for all nonzero elements in
general Banach spaces; that is why we restrict to complex-valued
functions here.)
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What questions do you have?



We use Corollary 11.5.3 to show the following important result in
algebra.

Theorem 11.5. (Fundamental Theorem of Algebra). Every
nonconstant polynomial function from C to C has at least one root
in C.

The lengthy proof is by contradiction.

Remark. The Fundamental Theorem of Algebra is an existence
result – its proof does not give an algorithm for finding the roots.
You have it as HW (Exercise 11.21) to show that a polynomial
pn(z) of degree n has exactly n roots (counting multiple roots).
Hint: use the Fundamental Theorem of Algebra to find a root, say
zn of pn(z), then form a new polynomial pn−1(z) of degree n − 1
obtained by dividing pn(z) by the factor z − zn. Is there a root
zn−1 of pn−1?
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What questions do you have?



Overview of Maximum Modulus Principle

For an open set U in C and a holomorphic function f : U → C, the
continuous function z → |f (z)|, on any compact subset K of U,
attains its maximum value at some point of K by the Extreme
Value Theorem.

When the open interior of K is nonempty and path-connected, the
Maximum Modulus Principle states that the point where the
maximum of |f | is attained must be on the boundary of K .

The Maximum Modulus Principle is a consequence of the following
two Lemmas that apply to general complex Banach spaced valued
holomorphic functions.

The book states Lemma 11.5.6 only for complex-valued
holomorphic functions, but its proof works for general complex
Banach spaced value holomorphic functions, and we present this
way.
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Lemma 11.5.6. For an open U in C and f : U → X holomorphic, if

• ‖f ‖X attains its supremum at z0 ∈ U,

then

• ‖f ‖X is constant in every open ball B(z0, r) whose closure
B(z0, r) is contained in U.

The proof is a consequence of Gauss’ Mean Value Theorem.

Lemma (Precursor to Maximum Modulus Theorem). For U an
open, path-connected subset of C and f : U → X holomorphic, if

• ‖f ‖X is not constant on U,

then

• the continuous function z → ‖f (z)‖X never attains its
supremum on U.
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What questions do you have?



Example. We consider again the matrix valued entire function

f (z) =

[
1 0
0 z

]
∈ M2(C).

For the open, path-connected set U = B(0, 2) in C, the restriction
f : U → M2(C) is holomorphic and in terms of the induced matrix
norm ‖ · ‖∞, we have

‖f (z)‖∞ =

{
1 if z ∈ B(0, 1),

|z | if z ∈ B(0, 2) \ B(0, 1).

The nonconstant function ‖f ‖∞ does not attain is supremum of 2
on U.
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To get the Maximum Modulus Principle as stated earlier, we
restrict to complex-valued holomorphic functions f .

We do this so we can use Proposition 11.1.7 which states that if
|f | is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that ‖f ‖X is
constant on an open, path-connected set implies f is constant, as
illustrated next.
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f : U → M2(C) is a nonconstant holomorphic function.
But in terms of the induced matrix norm ‖ · ‖∞, we have
‖f (z)‖∞ = 1 for all z ∈ U.



To get the Maximum Modulus Principle as stated earlier, we
restrict to complex-valued holomorphic functions f .

We do this so we can use Proposition 11.1.7 which states that if
|f | is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that ‖f ‖X is
constant on an open, path-connected set implies f is constant, as
illustrated next.

Example. We consider again the matrix valued entire function

f (z) =

[
1 0
0 z

]
∈ M2(C).

For the open, path-connected set U = B(0, 1) in C, the restriction
f : U → M2(C) is a nonconstant holomorphic function.
But in terms of the induced matrix norm ‖ · ‖∞, we have
‖f (z)‖∞ = 1 for all z ∈ U.



To get the Maximum Modulus Principle as stated earlier, we
restrict to complex-valued holomorphic functions f .

We do this so we can use Proposition 11.1.7 which states that if
|f | is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that ‖f ‖X is
constant on an open, path-connected set implies f is constant, as
illustrated next.

Example. We consider again the matrix valued entire function

f (z) =

[
1 0
0 z

]
∈ M2(C).

For the open, path-connected set U = B(0, 1) in C, the restriction
f : U → M2(C) is a nonconstant holomorphic function.
But in terms of the induced matrix norm ‖ · ‖∞, we have
‖f (z)‖∞ = 1 for all z ∈ U.



To get the Maximum Modulus Principle as stated earlier, we
restrict to complex-valued holomorphic functions f .

We do this so we can use Proposition 11.1.7 which states that if
|f | is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that ‖f ‖X is
constant on an open, path-connected set implies f is constant, as
illustrated next.

Example. We consider again the matrix valued entire function

f (z) =

[
1 0
0 z

]
∈ M2(C).

For the open, path-connected set U = B(0, 1) in C, the restriction
f : U → M2(C) is a nonconstant holomorphic function.

But in terms of the induced matrix norm ‖ · ‖∞, we have
‖f (z)‖∞ = 1 for all z ∈ U.



To get the Maximum Modulus Principle as stated earlier, we
restrict to complex-valued holomorphic functions f .

We do this so we can use Proposition 11.1.7 which states that if
|f | is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that ‖f ‖X is
constant on an open, path-connected set implies f is constant, as
illustrated next.

Example. We consider again the matrix valued entire function

f (z) =

[
1 0
0 z

]
∈ M2(C).

For the open, path-connected set U = B(0, 1) in C, the restriction
f : U → M2(C) is a nonconstant holomorphic function.
But in terms of the induced matrix norm ‖ · ‖∞, we have
‖f (z)‖∞ = 1 for all z ∈ U.



Theorem 11.5.5 (The Maximum Modulus Principle). For an open,
path-connected U in C and a holomorphic f : U → C, if

• f is not constant on U,

then

• |f | does not attain its supremum on U.

The next result, a corollary of the Maximum Modulus Principle, is
stated in an imprecise manner in the book. Here is a precise
version.

Corollary 11.5.7. For a compact set D whose interior D◦ is
nonempty and path-connected, if

• f : D → C is continuous and holomorphic on D◦,

then

• |f | attains is maximum on ∂D.
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