11.5 Consequences of Cauchy's Integral Formula

March 17, 2020

As always, $(X, \|\cdot\|)$ is a Banach space.

As always, $(X, \|\cdot\|)$ is a Banach space.

Some results hold for general holomorphic functions of the form

 $f: U \rightarrow X.$

As always, $(X, \|\cdot\|)$ is a Banach space.

Some results hold for general holomorphic functions of the form

 $f: U \to X.$

Some results hold only for holomorphic functions of the form

 $f: U \to \mathbb{C}.$

As always, $(X, \|\cdot\|)$ is a Banach space.

Some results hold for general holomorphic functions of the form

 $f: U \to X.$

Some results hold only for holomorphic functions of the form

 $f: U \to \mathbb{C}.$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

We will be sure to indicate which it is in the results.

Definition. For U a subset of \mathbb{C} , a function $f : U \to X$ is bounded if there exists M > 0 such that

 $||f(z)||_X \leq M$ for all $z \in U$.

Definition. For U a subset of \mathbb{C} , a function $f : U \to X$ is bounded if there exists M > 0 such that

$$||f(z)||_X \leq M$$
 for all $z \in U$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の へ ⊙

Theorem 11.5.1 (Liouville's Theorem). If $f : \mathbb{C} \to X$ is

- entire, and
- bounded,

then

• *f* is a constant function.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

By Liouville's Theorem they are not bounded on \mathbb{C} .

By Liouville's Theorem they are not bounded on \mathbb{C} .

You have HW (Exercise 11.20) to find sequences $\{z_n\}$ and $\{w_n\}$ in \mathbb{C} for which $|\sin(z_n)| \to \infty$ and $|\cos(w_n)| \to \infty$.

By Liouville's Theorem they are not bounded on \mathbb{C} .

You have HW (Exercise 11.20) to find sequences $\{z_n\}$ and $\{w_n\}$ in \mathbb{C} for which $|\sin(z_n)| \to \infty$ and $|\cos(w_n)| \to \infty$.

You are given a hint for sin(z) in Exercise 11.20, but here are some better hints: for z = x + iy, there holds

$$sin(z) = sin x cosh y + i cos x sinh y$$
,

$$\cos(z) = \cos x \cosh y - i \sin x \sinh y.$$

$$\cos(z) = \frac{e^{y} + e^{-y}}{2} \qquad \sinh y = \frac{e^{y} - e^{-y}}{2}$$

What questions do you have?

Example. A complex Banach space is the complex vector space $M_n(\mathbb{C})$ equipped with the induced matrix norm $\|\cdot\|_{\infty}$. The function $f: \mathbb{C} \to M_2(\mathbb{C})$ defined by

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix}$$

is entire because for any $z_0 \in \mathbb{C}$ we have

$$\lim_{z\to z_0}\frac{f(z)-f(z_0)}{z-z_0}=\lim_{z\to z_0}\frac{1}{z-z_0}\begin{bmatrix}0&0\\0&z-z_0\end{bmatrix}=\begin{bmatrix}0&0\\0&1\end{bmatrix}.$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Example. A complex Banach space is the complex vector space $M_n(\mathbb{C})$ equipped with the induced matrix norm $\|\cdot\|_{\infty}$. The function $f: \mathbb{C} \to M_2(\mathbb{C})$ defined by

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix}$$

is entire because for any $z_0 \in \mathbb{C}$ we have

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{1}{z - z_0} \begin{bmatrix} 0 & 0 \\ 0 & z - z_0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

The entire function f is not constant, and so by the contrapositive of Liouville's Theorem its norm is not bounded; explicitly we have

$$\|f(z)\|_{\infty} = \max\{1, |z|\} \to \infty$$

as $|z| \to \infty$.

Example. A complex Banach space is the complex vector space $M_n(\mathbb{C})$ equipped with the induced matrix norm $\|\cdot\|_{\infty}$. The function $f: \mathbb{C} \to M_2(\mathbb{C})$ defined by

$$f(z) = egin{bmatrix} 1 & 0 \ 0 & z \end{bmatrix}$$

is entire because for any $z_0 \in \mathbb{C}$ we have

$$\lim_{z \to z_0} \frac{f(z) - f(z_0)}{z - z_0} = \lim_{z \to z_0} \frac{1}{z - z_0} \begin{bmatrix} 0 & 0 \\ 0 & z - z_0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}.$$

The entire function f is not constant, and so by the contrapositive of Liouville's Theorem its norm is not bounded; explicitly we have

$$\|f(z)\|_{\infty} = \max\{1, |z|\} \to \infty$$

as $|z| \rightarrow \infty$. This matrix valued function f is readily generalized to $n \ge 3$. Definition. For U a subset of \mathbb{C} , a function $f : U \to \mathbb{C}$ is uniformly bounded away from 0 if there exists $\epsilon > 0$ such that $|f(z)| \ge \epsilon$ for all $z \in U$.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の Q @

Definition. For U a subset of \mathbb{C} , a function $f : U \to \mathbb{C}$ is uniformly bounded away from 0 if there exists $\epsilon > 0$ such that $|f(z)| \ge \epsilon$ for all $z \in U$.

Corollary 11.5.3. If $f : \mathbb{C} \to \mathbb{C}$ is entire and f is uniformly bounded away from zero, then f is constant.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Definition. For U a subset of \mathbb{C} , a function $f : U \to \mathbb{C}$ is uniformly bounded away from 0 if there exists $\epsilon > 0$ such that $|f(z)| \ge \epsilon$ for all $z \in U$.

Corollary 11.5.3. If $f : \mathbb{C} \to \mathbb{C}$ is entire and f is uniformly bounded away from zero, then f is constant.

Connection with Liouville's Theorem and restriction to complex-valued entire functions:

$$\left|\frac{1}{f(z)}\right| \leq \frac{1}{\epsilon}.$$

(Do not have multiplicative inverses for all nonzero elements in general Banach spaces; that is why we restrict to complex-valued functions here.)

What questions do you have?

Theorem 11.5. (Fundamental Theorem of Algebra). Every nonconstant polynomial function from $\mathbb C$ to $\mathbb C$ has at least one root in $\mathbb C.$

Theorem 11.5. (Fundamental Theorem of Algebra). Every nonconstant polynomial function from $\mathbb C$ to $\mathbb C$ has at least one root in $\mathbb C.$

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 → のへで

The lengthy proof is by contradiction.

Theorem 11.5. (Fundamental Theorem of Algebra). Every nonconstant polynomial function from \mathbb{C} to \mathbb{C} has at least one root in \mathbb{C} .

The lengthy proof is by contradiction.

Remark. The Fundamental Theorem of Algebra is an existence result – its proof does not give an algorithm for finding the roots. You have it as HW (Exercise 11.21) to show that a polynomial $p_n(z)$ of degree *n* has exactly *n* roots (counting multiple roots). Hint: use the Fundamental Theorem of Algebra to find a root, say z_n of $p_n(z)$, then form a new polynomial $p_{n-1}(z)$ of degree n-1obtained by dividing $p_n(z)$ by the factor $z - z_n$. Is there a root z_{n-1} of p_{n-1} ? What questions do you have?

For an open set U in \mathbb{C} and a holomorphic function $f: U \to \mathbb{C}$, the continuous function $z \to |f(z)|$, on any compact subset K of U, attains its maximum value at some point of K by the Extreme Value Theorem.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

For an open set U in \mathbb{C} and a holomorphic function $f: U \to \mathbb{C}$, the continuous function $z \to |f(z)|$, on any compact subset K of U, attains its maximum value at some point of K by the Extreme Value Theorem.

When the open interior of K is nonempty and path-connected, the Maximum Modulus Principle states that the point where the maximum of |f| is attained must be on the boundary of K.

< ロ > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

For an open set U in \mathbb{C} and a holomorphic function $f: U \to \mathbb{C}$, the continuous function $z \to |f(z)|$, on any compact subset K of U, attains its maximum value at some point of K by the Extreme Value Theorem.

When the open interior of K is nonempty and path-connected, the Maximum Modulus Principle states that the point where the maximum of |f| is attained must be on the boundary of K.

The Maximum Modulus Principle is a consequence of the following two Lemmas that apply to general complex Banach spaced valued holomorphic functions.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少へ⊙

For an open set U in \mathbb{C} and a holomorphic function $f: U \to \mathbb{C}$, the continuous function $z \to |f(z)|$, on any compact subset K of U, attains its maximum value at some point of K by the Extreme Value Theorem.

When the open interior of K is nonempty and path-connected, the Maximum Modulus Principle states that the point where the maximum of |f| is attained must be on the boundary of K.

The Maximum Modulus Principle is a consequence of the following two Lemmas that apply to general complex Banach spaced valued holomorphic functions.

The book states Lemma 11.5.6 only for complex-valued holomorphic functions, but its proof works for general complex Banach spaced value holomorphic functions, and we present this way.

Lemma 11.5.6. For an open U in \mathbb{C} and $f : U \to X$ holomorphic, if

• $||f||_X$ attains its supremum at $z_0 \in U$,

then

• $\frac{\|f\|_X}{B(z_0, r)}$ is constant in every open ball $B(z_0, r)$ whose closure $B(z_0, r)$ is contained in U.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Lemma 11.5.6. For an open U in \mathbb{C} and $f : U \to X$ holomorphic, if

• $||f||_X$ attains its supremum at $z_0 \in U$,

then

• $\frac{\|f\|_X}{B(z_0, r)}$ is constant in every open ball $B(z_0, r)$ whose closure $\overline{B(z_0, r)}$ is contained in U.

The proof is a consequence of Gauss' Mean Value Theorem.

Lemma 11.5.6. For an open U in \mathbb{C} and $f : U \to X$ holomorphic, if

• $||f||_X$ attains its supremum at $z_0 \in U$,

then

• $\frac{\|f\|_X}{B(z_0, r)}$ is constant in every open ball $B(z_0, r)$ whose closure $\overline{B(z_0, r)}$ is contained in U.

The proof is a consequence of Gauss' Mean Value Theorem.

Lemma (Precursor to Maximum Modulus Theorem). For U an open, path-connected subset of \mathbb{C} and $f : U \to X$ holomorphic, if

•
$$||f||_X$$
 is not constant on U ,

then

• the continuous function $z \to ||f(z)||_X$ never attains its supremum on U.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

What questions do you have?

Example. We consider again the matrix valued entire function

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix} \in M_2(\mathbb{C}).$$

・ロト < 団ト < 巨ト < 巨ト < 巨 < つへぐ

Example. We consider again the matrix valued entire function

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix} \in M_2(\mathbb{C}).$$

For the open, path-connected set U = B(0,2) in \mathbb{C} , the restriction $f: U \to M_2(\mathbb{C})$ is holomorphic and in terms of the induced matrix norm $\|\cdot\|_{\infty}$, we have

$$\|f(z)\|_{\infty}=egin{cases} 1 & ext{if } z\in\overline{B(0,1)},\ |z| & ext{if } z\in B(0,2)\setminus\overline{B(0,1)}. \end{cases}$$

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Example. We consider again the matrix valued entire function

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix} \in M_2(\mathbb{C}).$$

For the open, path-connected set U = B(0, 2) in \mathbb{C} , the restriction $f: U \to M_2(\mathbb{C})$ is holomorphic and in terms of the induced matrix norm $\|\cdot\|_{\infty}$, we have

$$\|f(z)\|_{\infty} = egin{cases} 1 & ext{if } z \in \overline{B(0,1)}, \ |z| & ext{if } z \in B(0,2) \setminus \overline{B(0,1)}. \end{cases}$$

The nonconstant function $||f||_{\infty}$ does not attain is supremum of 2 on U.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

We do this so we can use Proposition 11.1.7 which states that if |f| is constant on an open, path-connected set, then f is constant.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● の へ ⊙

We do this so we can use Proposition 11.1.7 which states that if |f| is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that $||f||_X$ is constant on an open, path-connected set implies f is constant, as illustrated next.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ 少へ⊙

We do this so we can use Proposition 11.1.7 which states that if |f| is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that $||f||_X$ is constant on an open, path-connected set implies f is constant, as illustrated next.

Example. We consider again the matrix valued entire function

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix} \in M_2(\mathbb{C}).$$

For the open, path-connected set U = B(0, 1) in \mathbb{C} , the restriction $f: U \to M_2(\mathbb{C})$ is a nonconstant holomorphic function.

◆□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶

We do this so we can use Proposition 11.1.7 which states that if |f| is constant on an open, path-connected set, then f is constant.

For general complex Banach spaces it is not true that $||f||_X$ is constant on an open, path-connected set implies f is constant, as illustrated next.

Example. We consider again the matrix valued entire function

$$f(z) = \begin{bmatrix} 1 & 0 \\ 0 & z \end{bmatrix} \in M_2(\mathbb{C}).$$

For the open, path-connected set U = B(0, 1) in \mathbb{C} , the restriction $f: U \to M_2(\mathbb{C})$ is a nonconstant holomorphic function. But in terms of the induced matrix norm $\|\cdot\|_{\infty}$, we have $\|f(z)\|_{\infty} = 1$ for all $z \in U$. Theorem 11.5.5 (The Maximum Modulus Principle). For an open, path-connected U in \mathbb{C} and a holomorphic $f : U \to \mathbb{C}$, if

▲□▶ ▲□▶ ▲ 国▶ ▲ 国▶ ▲ 国 → のへで

• f is not constant on U,

then

• |f| does not attain its supremum on U.

Theorem 11.5.5 (The Maximum Modulus Principle). For an open, path-connected U in \mathbb{C} and a holomorphic $f : U \to \mathbb{C}$, if

• f is not constant on U,

then

• |f| does not attain its supremum on U.

The next result, a corollary of the Maximum Modulus Principle, is stated in an imprecise manner in the book. Here is a precise version.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● のへで

Theorem 11.5.5 (The Maximum Modulus Principle). For an open, path-connected U in \mathbb{C} and a holomorphic $f : U \to \mathbb{C}$, if

• f is not constant on U,

then

• |f| does not attain its supremum on U.

The next result, a corollary of the Maximum Modulus Principle, is stated in an imprecise manner in the book. Here is a precise version.

Corollary 11.5.7. For a compact set D whose interior D° is nonempty and path-connected, if

• $f: D \to \mathbb{C}$ is continuous and holomorphic on D° ,

then

• |f| attains is maximum on ∂D . boundary of D

What questions do you have?