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Throughout we assume that (X , ‖ · ‖) is a complex Banach space.

For a function f : U → X holomorphic on an open U in C, we can
form for each z0 ∈ U the Taylor series

∞∑
k=0

f (k)(z0)

k!
(z − z0)k

because f is infinitely holomorphic on U by Corollary 11.4.8.

Using the geometric series, and Cauchy’s Integral and
Differentiation formulas the following result shows that the Taylor
series of f at z0 converges to f on some open ball B(z0, r) ⊂ U for
r > 0.



Theorem 11.6.1. For an open U in C, if

• f : U → X is holomorphic,

then

• for each z0 ∈ U there exists a largest r ∈ (0,∞] such that
B(z0, r) ⊂ U, and

• the Taylor series for f at z0 converges uniformly to f on
compact subset of B(z0, r).

[Draw the picture of U and B(z0, r)]



Remark 11.6.2. We now have shown that a function f : U → X is
holomorphic on U if and only if f is analytic on U. Because of this
equivalence, we often use holomorphic and analytic
interchangeably.

Proposition 11.6.3. For {ak}∞k=0 ⊂ X , a convergent power series

f (z) =
∞∑
k=0

ak(z − z0)k

about z0 ∈ C is unique and equal to its Taylor series.

Corollary 11.6.4. For an open, path-connected subset U of C, and
a holomorphic f : U → X , if there exists z0 ∈ U such that
f (n)(z0) = 0 for all n = 0, 1, 2, 3, . . . , then f (z) = 0 for all z ∈ U.



What questions do you have?



First Online Reading Quiz Question.

(1) What are you reading about the zeros of analytic functions?
(2) What would happen if an analytic function f had infinitely

many zeros on a compact set inside is open domain U?



A property of a not identically equal to zero holomorphic function
f : U → X is that its zeros, if any, must be “isolated.”

This is to say, if f (z0) = 0, then there exists ε > 0 such that
f (z) 6= 0 for all z ∈ B(z0, ε) \ {z0}.

We will use the “order of a zero” (defined next) to obtain this
isolation of zeros.

Definition 11.6.5. For an open U, we say that a holomorphic
f : U → X has a zero of order n ∈ N at z0 ∈ U if the Taylor series
of f about z0 has the form

f (z) =
∞∑
k=n

ak(z − z0)k

for an 6= 0, i.e., f (j)(z0) = 0 for all j = 0, 1, . . . , n − 1 and
f (n)(z0) 6= 0.



Proposition 11.6.6. For an open U and f : U → X holomorphic,
if z0 ∈ U is a zero of order n for f , then there exists a holomorphic
function g : U → X such that

f (z) = (z − z0)ng(z)

and
g(z0) 6= 0,

and there exists ε > 0 such that B(z0, ε) ⊂ U and f (z) 6= 0 for all
z ∈ B(z0, ε) \ {z0}.

Remark. This says the you can literally factor out of f the term
(z − z0)n that completely accounts for the zero of f at z0, and the
order is the power n of z − z0 in this factor.



Example. The entire function f (z) = sin(z) has an isolated zero
z0 = 0.

From the Taylor series we have

sin(z) =
∞∑
k=0

(−1)kz2k+1

(2k + 1)!
= (z − 0)

∞∑
k=0

(−1)kz2k

(2k + 1)!
= (z − z0)g(z),

where g(0) 6= 0, so that f (z) has a zero of order 1 at z0 = 0.

Corollary 11.6.7 (Local Isolation of Zeros). For an open,
path-connected U in C, and a holomorphic f : U → X , if

• there is a sequence (zk)∞k=1 of distinct points in U where
zk → w ∈ U and f (zk) = 0 for all k ∈ N,

then

• f (z) = 0 for all z ∈ U.



What questions do you have?



A journey to Laurent Series

For a holomorphic f : U → X such that f (z0) 6= 0 for z0 ∈ U, the
function

g(z) =
f (z)

z − z0

is not complex differentiable at z0 and so there is no Taylor series
for g about z0.

We know by Cauchy’s Integral formula that for any simple closed
contour γ in U enclosing z0 there holds

1

2πi

‰
γ
g(z) dz =

1

2πi

‰
γ

f (z)

z − z0
dz = f (z0).

On the other hand....



Using the Taylor’s series for f about z0, i.e.,

f (z) =
∞∑
k=0

f (k)(z0)

k!
(z − z0)k ,

we can express the function g as

g(z) =
f (z)

z − z0
=

1

z − z0

∞∑
k=0

f (k)(z0)

k!
(z − z0)k

=
∞∑
k=0

f (k)(z0)

k!
(z − z0)k−1

which makes sense on a punctured ball B(z0, r) \ {z0} for some
r > 0.



Since z0 6∈ γ and integration and uniform convergence commute,
we can use the series expression for g to compute

‰
γ
g(z) dz =

‰
γ

∞∑
k=0

f (k)(z0)

k!
(z−z0)k−1 =

∞∑
k=0

f (k)(z0)

k!

‰
γ

(z−z0)k−1.

By Lemma 11.3.5, the contour integrals

‰
γ

(z − z0)k−1 dz = 0 when k ≥ 1, and

‰
γ

(z − z0)k−1 dz = 2πi when k = 0.

Thus we obtain

1

2πi

‰
γ
g(z) dz =

2πi

2πi
f (z0) = f (z0)

in agreement with Cauchy’s Integral Formula.



What questions do you have?



Definition. For coefficients ak ∈ X for k ∈ Z, a Laurent series is a
series of the form

∞∑
k=−∞

ak(z − z0)k .

To talk about convergence of Laurent series we will use the open
annulus A centered at z0 with inner radius r and outer radius R
defined by

A = {z ∈ C : r < |z − z0| < R}

where 0 ≤ r < R ≤ ∞.

[Draw picture of open annulus]



Theorem 11.6.8 (Laurent Expansion). For the open annulus A
centered at z0 with inner radius r and outer radius R, if f : A→ X
is holomorphic, then f has a Laurent series

f (z) =
∞∑

k=−∞
ak(z − z0)k

where each of the power series in the decomposition

∞∑
k=0

ak(z − z0)k +
∞∑
k=1

a−k

(
1

z − z0

)k

converge uniformly and absolutely on every compact subannulus

Dρ,% = {z ∈ C : ρ ≤ |z − z0| ≤ %}

of A, i.e., for all r < ρ < % < R. The coefficients ak in the Laurent
series for f are given explicitly by

ak =
1

2πi

‰
γ

f (w)

(w − z0)k+1
dw

for any circle γ of radius strictly between r and R.



What questions do you have?



Second Reading Quiz Question: Computing a Laurent series is just
as easy as computing a Taylor series.

False

Remark 11.6.10. Computing the Laurent series is usually quite
difficult.

We will learn two ways to find Laurent series (illustrated by way of
upcoming examples).

As we will see, the only coefficient we really need in the Laurent
series of f holomorphic on the annulus A = B(z0, ε) \ {z0} is that
of the term (z − z0)−1 when computing any contour integral

‰
γ
f (z) dz

for a simple closed contour γ in A that encloses z0.



Example (in lieu of 11.6.11). The Laurent series of

f (z) =
sin(z)

z4

on the open annulus

A = {z ∈ C : 0 < |z | <∞} = C \ {0}

is obtained by dividing the power series for sin(z) by z4, i.e.,

sin(z)

z4
=

1

z4

∞∑
k=0

(−1)kz2k+1

(2k + 1)!

=
∞∑
k=0

(−1)kz2k−3

(2k + 1)!

=
1

z3
− 1

6z
+

z

5!
− · · · .



Since the Laurent series for this holomorphic function converges
uniformly on A, we can compute the contour integral of f over any
circle centered at 0 with radius ν > 0 by a “direct” calculation
after commuting the sum and the integral:

‰
γ
f (z) dz =

∞∑
k=0

(−1)k

(2k + 1)!

‰
γ

(z − z0)2k−3 dz

= −1

6

‰
γ

(z − z0)−1 dz

= −πi
3
,

where all the other contour integrals are zero by Lemma 11.3.5.



This gives
1

2πi

‰
γ
f (z) dz = −1

6
.

On the other hand, by Cauchy’s Differentiation formula we arrive
at the same answer:

1

2πi

‰
γ
f (z) dz =

1

3!

3!

2πi

‰
γ

sin(z)

(z − 0)4
dz

=
1

6

(
− cos(0)

)
= −1

6

because the third derivative of sin(z) is − cos(z).



What questions do you have?



Example (in lieu of 11.6.12). Find the Laurent series for

f (z) =
2

(z − 1)2(z + 1)

about the point z0 = 1, i.e., an open annulus centered at z0 = 1.
[We will determine the inner and outer radius in a moment.]

Applying the method of partial fractions to the function gives

f (z) =
1

(z − 1)2
− 1/2

z − 1
+

1/2

z + 1
.

We express the last term
1/2

z + 1

as a power series in (z − 1) using the geometric series as follows:



1/2

z + 1
=

1/2

2− (−z + 1)

=
1/4

1− (−z + 1)/2

[
1

1− r
=
∞∑
k=0

rk , r =
−z + 1

2

]

=
1

4

∞∑
k=0

(
−z + 1

2

)k

=
1

4

∞∑
k=0

(
−z − 1

2

)k

=
1

4

∞∑
k=0

(−1)k

2k
(z − 1)k

=
∞∑
k=0

(−1)k

2k+2
(z − 1)k .



We obtain the Laurent series

f (z) =
1

(z − 1)2
− 1/2

z − 1
+
∞∑
k=0

(−1)k

2k+2
(z − 1)k .

The open annulus A of convergence for this Laurent series is
centered at z0 = 1, with inner radius r = 0 and outer radius R = 2
which is determined by the condition for convergence of the
geometric series

|(−z + 1)/2| < 1.

[Draw picture of annulus A]



For a simple closed contour γ in A that encloses z0 = 1 we use the
Laurent series

f (z) =
1

(z − 1)2
− 1/2

z − 1
+
∞∑
k=0

(−1)k

2k+2
(z − 1)k

to compute

1

2πi

‰
γ
f (z) dz =

1

2πi

‰
γ

−1/2

z − 1
dz = −2πi

4πi
= −1

2
,

where we have used the interchange of integration and uniform
convergence, and Lemma 11.3.5.



What questions do you have?


