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Throughout we assume that (X , k · k) is a complex Banach space.

For a function f : U ! X holomorphic on an open U in C, we can

form for each z0 2 U the Taylor series

1X

k=0

f (k)(z0)

k!
(z � z0)

k

because f is infinitely holomorphic on U by Corollary 11.4.8.

Using the geometric series, and Cauchy’s Integral and

Di↵erentiation formulas the following result shows that the Taylor

series of f at z0 converges to f on some open ball B(z0, r) ⇢ U for

r > 0.



Theorem 11.6.1. For an open U in C, if
• f : U ! X is holomorphic,

then

• for each z0 2 U there exists a largest r 2 (0,1] such that

B(z0, r) ⇢ U, and

• the Taylor series for f at z0 converges uniformly to f on

compact subset of B(z0, r).

[Draw the picture of U and B(z0, r)]
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Remark 11.6.2. We now have shown that a function f : U ! X is

holomorphic on U if and only if f is analytic on U. Because of this

equivalence, we often use holomorphic and analytic

interchangeably.

Proposition 11.6.3. For {ak}1k=0 ⇢ X , a convergent power series

f (z) =
1X

k=0

ak(z � z0)
k

about z0 2 C is unique and equal to its Taylor series.

Corollary 11.6.4. For an open, path-connected subset U of C, and
a holomorphic f : U ! X , if there exists z0 2 U such that

f (n)(z0) = 0 for all n = 0, 1, 2, 3, . . . , then f (z) = 0 for all z 2 U.

p



What questions do you have?



First Online Reading Quiz Question.

(1) What are you reading about the zeros of analytic functions?

(2) What would happen if an analytic function f had infinitely

many zeros on a compact set inside is open domain U?



A property of a not identically equal to zero holomorphic function

f : U ! X is that its zeros, if any, must be “isolated.”

This is to say, if f (z0) = 0, then there exists ✏ > 0 such that

f (z) 6= 0 for all z 2 B(z0, ✏) \ {z0}.

We will use the “order of a zero” (defined next) to obtain this

isolation of zeros.

Definition 11.6.5. For an open U, we say that a holomorphic

f : U ! X has a zero of order n 2 N at z0 2 U if the Taylor series

of f about z0 has the form

f (z) =
1X

k=n

ak(z � z0)
k

for an 6= 0, i.e., f (j)(z0) = 0 for all j = 0, 1, . . . , n � 1 and

f (n)(z0) 6= 0.



Proposition 11.6.6. For an open U and f : U ! X holomorphic,

if z0 2 U is a zero of order n for f , then there exists a holomorphic

function g : U ! X such that

f (z) = (z � z0)
ng(z)

and

g(z0) 6= 0,

and there exists ✏ > 0 such that B(z0, ✏) ⇢ U and f (z) 6= 0 for all

z 2 B(z0, ✏) \ {z0}.

Remark. This says the you can literally factor out of f the term

(z � z0)n that completely accounts for the zero of f at z0, and the

order is the power n of z � z0 in this factor.



Example. The entire function f (z) = sin(z) has an isolated zero

z0 = 0.

From the Taylor series we have

sin(z) =
1X

k=0

(�1)
kz2k+1

(2k + 1)!
= (z � 0)

1X

k=0

(�1)
kz2k

(2k + 1)!
= (z � z0)g(z),

where g(0) 6= 0, so that f (z) has a zero of order 1 at z0 = 0.

Corollary 11.6.7 (Local Isolation of Zeros). For an open,

path-connected U in C, and a holomorphic f : U ! X , if

• there is a sequence (zk)1k=1 of distinct points in U where

zk ! w 2 U and f (zk) = 0 for all k 2 N,
then

• f (z) = 0 for all z 2 U.



What questions do you have?



A journey to Laurent Series

For a holomorphic f : U ! X such that f (z0) 6= 0 for z0 2 U, the

function

g(z) =
f (z)

z � z0

is not complex di↵erentiable at z0 and so there is no Taylor series

for g about z0.

We know by Cauchy’s Integral formula that for any simple closed

contour � in U enclosing z0 there holds

1

2⇡i

‰
�
g(z) dz =

1

2⇡i

‰
�

f (z)

z � z0
dz = f (z0).

On the other hand....



Using the Taylor’s series for f about z0, i.e.,

f (z) =
1X

k=0

f (k)(z0)

k!
(z � z0)

k ,

we can express the function g as

g(z) =
f (z)

z � z0
=

1

z � z0

1X

k=0

f (k)(z0)

k!
(z � z0)

k

=

1X

k=0

f (k)(z0)

k!
(z � z0)

k�1

which makes sense on a punctured ball B(z0, r) \ {z0} for some

r > 0.



Since z0 62 � and integration and uniform convergence commute,

we can use the series expression for g to compute

‰
�
g(z) dz =

‰
�

1X

k=0

f (k)(z0)

k!
(z�z0)

k�1
=

1X

k=0

f (k)(z0)

k!

‰
�
(z�z0)

k�1.

By Lemma 11.3.5, the contour integrals

‰
�
(z � z0)

k�1 dz = 0 when k � 1, and

‰
�
(z � z0)

k�1 dz = 2⇡i when k = 0.

Thus we obtain

1

2⇡i

‰
�
g(z) dz =

2⇡i

2⇡i
f (z0) = f (z0)

in agreement with Cauchy’s Integral Formula.



What questions do you have?



Definition. For coe�cients ak 2 X for k 2 Z, a Laurent series is a

series of the form
1X

k=�1
ak(z � z0)

k .

To talk about convergence of Laurent series we will use the open

annulus A centered at z0 with inner radius r and outer radius R
defined by

A = {z 2 C : r < |z � z0| < R}

where 0  r < R  1.

[Draw picture of open annulus]



Theorem 11.6.8 (Laurent Expansion). For the open annulus A
centered at z0 with inner radius r and outer radius R , if f : A ! X
is holomorphic, then f has a Laurent series

f (z) =
1X

k=�1
ak(z � z0)

k

where each of the power series in the decomposition

1X

k=0

ak(z � z0)
k
+

1X

k=1

a�k

✓
1

z � z0

◆k

converge uniformly and absolutely on every compact subannulus

D⇢,% = {z 2 C : ⇢  |z � z0|  %}

of A, i.e., for all r < ⇢ < % < R . The coe�cients ak in the Laurent

series for f are given explicitly by

ak =
1

2⇡i

‰
�

f (w)

(w � z0)k+1
dw

for any circle � of radius strictly between r and R .



What questions do you have?



Second Reading Quiz Question: Computing a Laurent series is just

as easy as computing a Taylor series.

False

Remark 11.6.10. Computing the Laurent series is usually quite

di�cult.

We will learn two ways to find Laurent series (illustrated by way of

upcoming examples).

As we will see, the only coe�cient we really need in the Laurent

series of f holomorphic on the annulus A = B(z0, ✏) \ {z0} is that

of the term (z � z0)�1
when computing any contour integral

‰
�
f (z) dz

for a simple closed contour � in A that encloses z0.



Example (in lieu of 11.6.11). The Laurent series of

f (z) =
sin(z)

z4

on the open annulus

A = {z 2 C : 0 < |z | < 1} = C \ {0}

is obtained by dividing the power series for sin(z) by z4, i.e.,

sin(z)

z4
=

1

z4

1X

k=0

(�1)
kz2k+1

(2k + 1)!

=

1X

k=0

(�1)
kz2k�3

(2k + 1)!

=
1

z3
� 1

6z
+

z

5!
� · · · .

Sin z

34

9

to



Since the Laurent series for this holomorphic function converges

uniformly on A, we can compute the contour integral of f over any

circle centered at 0 with radius ⌫ > 0 by a “direct” calculation

after commuting the sum and the integral:

‰
�
f (z) dz =

1X

k=0

(�1)
k

(2k + 1)!

‰
�
(z � z0)

2k�3 dz

= �1

6

‰
�
(z � z0)

�1 dz

= �⇡i

3
,

where all the other contour integrals are zero by Lemma 11.3.5.

g
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This gives

1

2⇡i

‰
�
f (z) dz = �1

6
.

On the other hand, by Cauchy’s Di↵erentiation formula we arrive

at the same answer:

1

2⇡i

‰
�
f (z) dz =

1

3!

3!

2⇡i

‰
�

sin(z)

(z � 0)4
dz

=
1

6

�
� cos(0)

�

= �1

6

because the third derivative of sin(z) is � cos(z).
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What questions do you have?



Example (in lieu of 11.6.12). Find the Laurent series for

f (z) =
2

(z � 1)2(z + 1)

about the point z0 = 1, i.e., an open annulus centered at z0 = 1.

[We will determine the inner and outer radius in a moment.]

Applying the method of partial fractions to the function gives

f (z) =
1

(z � 1)2
� 1/2

z � 1
+

1/2

z + 1
.

We express the last term

1/2

z + 1

as a power series in (z � 1) using the geometric series as follows:I



1/2

z + 1
=

1/2

2� (�z + 1)

=
1/4

1� (�z + 1)/2

"
1

1� r
=

1X

k=0

rk , r =
�z + 1

2

#

=
1

4

1X

k=0

✓
�z + 1

2

◆k

=
1

4

1X

k=0

✓
�z � 1

2

◆k

=
1

4

1X

k=0

(�1)
k

2k
(z � 1)

k

=

1X

k=0

(�1)
k

2k+2
(z � 1)

k .

f
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We obtain the Laurent series

f (z) =
1

(z � 1)2
� 1/2

z � 1
+

1X

k=0

(�1)
k

2k+2
(z � 1)

k .

The open annulus A of convergence for this Laurent series is

centered at z0 = 1, with inner radius r = 0 and outer radius R = 2

which is determined by the condition for convergence of the

geometric series

|(�z + 1)/2| < 1.

[Draw picture of annulus A]



For a simple closed contour � in A that encloses z0 = 1 we use the

Laurent series

f (z) =
1

(z � 1)2
� 1/2

z � 1
+

1X

k=0

(�1)
k

2k+2
(z � 1)

k

to compute

1

2⇡i

‰
�
f (z) dz =

1

2⇡i

‰
�

�1/2

z � 1
dz = �2⇡i

4⇡i
= �1

2
,

where we have used the interchange of integration and uniform

convergence, and Lemma 11.3.5.

of



What questions do you have?

co

E AK Z Zo
k

k co

a power series is a

special case of a

Laurent series


