11.7 The Residue Theorem

March 25, 2020

As always $(X,\|\cdot\|)$ is a complex Banach space.
Here is an outline for today.

- Isolated Singularities
- Residues and Winding Numbers
- The Residue Theorem

First Reading Quiz Question:

- What are the three types of isolated singularities that a holomorphic function can have?
- How is the residue of a holomorphic function at an isolated singularity computed?

Definition 11.7.1. For a point $z_{0} \in \mathbb{C}$, an $\epsilon>0$, and the punctured open disk

$$
U=\left\{z \in \mathbb{C}: 0<\left|z-z_{0}\right|<\epsilon\right\}
$$

for $f: U \rightarrow X$ holomorphic, we say that z_{0} is an isolated singularity of f if f is not assumed complex differentiable at z_{0}.

For an isolated singularity z_{0} of f the principal part of the Laurent series

$$
\sum_{k=-\infty}^{\infty} a_{k}\left(z-z_{0}\right)^{k}
$$

of f on $B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\}$ is the series

$$
\sum_{k=-\infty}^{-1} a_{k}\left(z-z_{0}\right)^{k}
$$

We use the principal part to classify isolated singularities.

Definition. An isolated singularity z_{0} of f is called a removable singularity if the principal part of the Laurent series of f about z_{0} is zero, i.e., $a_{k}=0$ for all $k=-1,-2,-3, \ldots$.

If f has a removable singularity at z_{0}, then f extends to a holomorphic function on $B\left(z_{0}, \epsilon\right)$ by means of the power series $\sum_{k=0}^{\infty} a_{k}\left(z-z_{0}\right)^{k}$ convergent on $B\left(z_{0}, \epsilon\right)$.

Example. The function

$$
\begin{aligned}
f(z) & =\frac{\cos (z)-1}{z^{2}}=\frac{1}{z^{2}} \sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}=\sum_{k=1}^{\infty} \frac{(-1)^{k} z^{2 k-2}}{(2 k)!} \\
& =-\frac{1}{2}+\frac{z^{2}}{4!}+\cdots
\end{aligned}
$$

has a removable singular at the isolated singularity $z_{0}=0$ of f.

Definition. An isolated singular z_{0} of f is called a pole of order $N \in \mathbb{N}$ if the principal part of the Laurent series of f about z_{0} has the form

$$
f(z)=\sum_{k=-N}^{-1} a_{k}\left(z-z_{0}\right)^{k}
$$

i.e., $a_{k}=0$ for all $k<-N$ in the Laurent series for f about z_{0}.

A pole of order 1 is called a simple pole.
Example. The function

$$
f(z)=\frac{\sin (z)}{z^{4}}=\frac{1}{z^{4}} \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k+1}}{(2 k+1)!}=\frac{1}{z^{3}}-\frac{1}{6 z}+\frac{z}{5!}+\cdots
$$

has a pole of order $N=3$ at the isolated singularity $z_{0}=0$ of f.

Definition. An isolated singularity z_{0} of f is called an essential singularity if the principal part of the Laurent series for f about z_{0} has infinitely many nonzero terms, i.e., $a_{k} \neq 0$ for infinitely many $-k \in \mathbb{N}$.

Example. The function

$$
\begin{aligned}
f(z)=\sin \left(\frac{1}{z}\right) & =\sum_{k=0}^{\infty} \frac{(-1)^{k}(1 / z)^{2 k+1}}{(2 k+1)!} \\
& =\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{-2 k-1}}{(2 k+1)!} \\
& =\frac{1}{z}-\frac{1}{6 z^{3}}+\frac{1}{5!z^{5}}-\cdots
\end{aligned}
$$

has an essential singularity at the isolated singularity $z_{0}=0$ of f.

What questions do you have?

Definition 11.7.4. For an open set U in \mathbb{C} and finitely many distinct points z_{1}, \ldots, z_{n} in U, a function

$$
f: U \backslash\left\{z_{1}, \ldots, z_{n}\right\} \rightarrow X
$$

is called meromorphic if f is holomorphic on the open set $U \backslash\left\{z_{1}, \ldots, z_{n}\right\}$ with f having poles at each z_{i}.

Example 11.7.5. For polynomials p and q with q not identically equal to 0 , the rational function

$$
p(z) / q(z)
$$

in lowest terms (i.e., any common factors that p and q have have already been cancelled), is a meromorphic function on $\mathbb{C} \backslash\left\{z_{1}, \ldots, z_{k}\right\}$ where z_{1}, \ldots, z_{k} are the distinct roots of q.

FYI: It is standard practice is always assume that a rational function is given in lowest terms, unless explicitly told otherwise.

Remark. We have already seen that the coefficient a_{-1} of the power $\left(z-z_{0}\right)^{-1}$ in the Laurent series of a function f holomorphic on a punctured disk $B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\}$ is the quantity needed when computing contour integrals of f on simply closed curves with z_{0} in its interior.

Because of the importance of this coefficient, we give it a name.
Definition 11.7.6. For a holomorphic $f: B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\} \rightarrow X$ and simple close curve γ in $B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\}$, the quantity

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z
$$

is called the residue of f at z_{0} and is denoted by $\operatorname{Res}\left(f, z_{0}\right)$.
Proposition 11.7.7. If $f: B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\} \rightarrow X$ is holomorphic, then $\operatorname{Res}\left(f, z_{0}\right)$ is the coefficient a_{-1} of the power $\left(z-z_{0}\right)^{-1}$ in the Laurent series of f about z_{0}.

Proposition 11.7.8. Suppose a holomorphic f has an isolated singularity at z_{0}.
(i) The isolated singularity at z_{0} is removable if and only if $\lim _{z \rightarrow z_{0}} f(z)$ exists (as a complex number; the book inaccurately uses the term finite).
(ii) If for some nonnegative integer k the limit $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right)^{k} f(z)$ exists (as a complex number), then the isolated singularity z_{0} of f is either a removable singularity or a pole of order equal to or less than k.
(iii) If the limit $\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)$ exists (as a complex number), then

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)
$$

The proof of this is HW (Exercise 11.29).

What questions do you have?

Journey to the Residue Theorem
Consider the contour integral

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{1}{z-z_{0}} d z
$$

for the closed contour $\gamma:[0,2 k \pi] \rightarrow \mathbb{C}$ given by $\gamma(t)=z_{0}+e^{i \theta}$ for a positive integer k.

Computing this contour integral gives

$$
\frac{1}{2 \pi i} \int_{0}^{2 k \pi} \frac{1}{e^{i \theta}}\left(i e^{i \theta}\right) d \theta=\frac{1}{2 \pi} \int_{0}^{2 k \pi} d \theta=\frac{2 k \pi}{2 \pi}=k
$$

The closed contour γ goes around z_{0} in the counterclockwise direction k times while the residue of $1 /\left(z-z_{0}\right)$ at z_{0} is 1 .

If this same curve γ is traversed in the clockwise direction, i.e., $\gamma(\theta)=z_{0}+e^{-i \theta}$, then we would get $-k$ as the value of the contour integral.

Furthermore, if γ is closed contour that does not enclose z_{0}, then $1 /\left(z-z_{0}\right)$ is holomorphic on a simply connected open set containing γ but not containing z_{0}, so that by the Cauchy-Goursat Theorem we have

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{1}{z-z_{0}} d z=0
$$

[Draw the picture]

These observations motivate the notion of the winding number.
Definition 11.7.9. For a closed contour γ in \mathbb{C} and z_{0} a point of \mathbb{C} not on γ, the winding number of γ with respect to z_{0} is the quantity

$$
I\left(\gamma, z_{0}\right)=\frac{1}{2 \pi i} \oint_{\gamma} \frac{1}{z-z_{0}} d z
$$

Lemma 11.7 .12 . For a simply connected open set U in \mathbb{C}, a closed contour γ in U, and a point $z_{0} \in U$ not on γ, if

$$
N(z)=\sum_{k=0}^{\infty} \frac{b_{k}}{\left(z-z_{0}\right)^{k}}
$$

is uniformly convergent on compact subsets of $U \backslash\left\{z_{0}\right\}$, then there holds

$$
\frac{1}{2 \pi i} \oint_{\gamma} N(z) d z=\operatorname{Res}\left(N, z_{0}\right) I\left(\gamma, z_{0}\right)
$$

The proof of this is HW (Exercise 11.30).

What questions do you have?

Theorem 11.7.13 (The Residue Theorem). For a simply connected U in \mathbb{C} and finitely many points $z_{1}, \ldots, z_{n} \in U$, if

$$
f: U \backslash\left\{z_{1}, \ldots, z_{n}\right\} \rightarrow X
$$

is holomorphic and γ is a closed contour in $U \backslash\left\{z_{1}, \ldots, z_{n}\right\}$, then

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{j=1}^{n} \operatorname{Res}\left(f, z_{j}\right) I\left(\gamma, z_{j}\right)
$$

Second Quiz Question: The Cauchy-Goursat Theorem and the Cauchy Integral Formula are special cases of the Residue Theorem.

True

The Residue Theorem has the Cauchy-Goursat Theorem as a special case.

When $f: U \rightarrow X$ is holomorphic, i.e., there are no points in U at which f is not complex differentiable, and γ in U is a simple closed curve, we select any $z_{0} \in U \backslash \gamma$.

The residue of f at z_{0} is 0 by Proposition 11.7.8 part (iii), i.e.,

$$
\operatorname{Res}\left(f, z_{0}\right)=\lim _{z \rightarrow z_{0}}\left(z-z_{0}\right) f(z)=0 ;
$$

hence, regardless of the value of $I\left(\gamma, z_{0}\right)$, the Residue Theorem gives

$$
\oint_{\gamma} f(z) d z=0 .
$$

The Residue Theorem has Cauchy's Integral formula also as special case.

When $f: U \rightarrow X$ is holomorphic, and $z_{0} \in U$, then the function $g(z)=f(z) /\left(z-z_{0}\right)$ is holomorphic on $U \backslash\left\{z_{0}\right\}$, so for any simple closed curve γ in U enclosing z_{0} the Residue Theorem gives

$$
\frac{1}{2 \pi i} \oint_{\gamma} \frac{f(z)}{z-z_{0}} d z=\frac{1}{2 \pi i} \oint_{\gamma} g(z) d z=\operatorname{Res}\left(g, z_{0}\right) I\left(\gamma, z_{0}\right) ;
$$

here $I\left(\gamma, z_{0}\right)=1$ because γ is a simple closed curve enclosing z_{0}, and $\operatorname{Res}\left(g, z_{0}\right)=f\left(z_{0}\right)$ because using the power series for f about z_{0} gives the Laurent series
$g(z)=\frac{f(z)}{z-z_{0}}=\frac{1}{z-z_{0}} \sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k}=\sum_{k=0}^{\infty} \frac{f^{(k)}\left(z_{0}\right)}{k!}\left(z-z_{0}\right)^{k-1}$
in which the coefficient of $\left(z-z_{0}\right)^{-1}$ is $f\left(z_{0}\right)$.

What questions do you have?

To use the Residue Theorem requires that we compute the required residues.

We have seen two ways to compute the residue of f at a point z_{0} : by computing the Laurent series of f on $B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\}$, or by Proposition 11.7.8 part (iii).

Of the many other means of computing $\operatorname{Res}\left(f, z_{0}\right)$ we mention another one.

Proposition 11.7.15. Suppose $g: B\left(z_{0}, \epsilon\right) \rightarrow X$ and $h: B\left(z_{0}, \epsilon\right) \rightarrow \mathbb{C}$ are holomorphic. If $g\left(z_{0}\right) \neq 0, h\left(z_{0}\right)=0$, and $h^{\prime}\left(z_{0}\right) \neq 0$, then the function $g(z) / h(z): B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\} \rightarrow X$ is meromorphic with a simple pole at z_{0} and

$$
\operatorname{Res}\left(\frac{g(z)}{h(z)}, z_{0}\right)=\frac{g\left(z_{0}\right)}{h^{\prime}\left(z_{0}\right)}
$$

Note. While you are responsible for knowing and using Proposition 11.7.15, you are NOT responsible for the next proposition on computing the residue for a pole of order 2 .

It is given to show you how complicated residue calculations can become for nonsimple poles.

Proposition. Suppose $g: B\left(z_{0}, \epsilon\right) \rightarrow X$ and $h: B\left(z_{0}, \epsilon\right) \rightarrow \mathbb{C}$ are holomorphic. If $g\left(z_{0}\right) \neq 0, h\left(z_{0}\right)=0, h^{\prime}\left(z_{0}\right)=0$, and $h^{\prime \prime}\left(z_{0}\right) \neq 0$, then $g(z) / h(z): B\left(z_{0}, \epsilon\right) \backslash\left\{z_{0}\right\} \rightarrow X$ is meromorphic with a pole of order 2 at z_{0}, and

$$
\operatorname{Res}\left(\frac{g(z)}{h(z)}, z_{0}\right)=\frac{2 g^{\prime}\left(z_{0}\right)}{h^{\prime \prime}\left(z_{0}\right)}-\frac{2 g\left(z_{0}\right) h^{(3)}\left(z_{0}\right)}{3\left[h^{\prime \prime}\left(z_{0}\right)\right]^{2}}
$$

REMEMBER YOU ARE NOT RESPONSIBLE FOR THIS
FORMULA.

Remark. A truly hideous formula for the residue of a pole of order N is given in my lecture notes.

It involves symbolic cofactor expansion of an $N \times N$ matrix.
Need I say more????
Remark. Unfortunately for an essential singularity of f at z_{0} there are no "simple" formulas for computing the residue of f at z_{0}.

We typically rely on computing, somehow, the Laurent series for f at z_{0} to find its residue at z_{0}.

Example (in lieu of 11.7.16). For the holomorphic function

$$
f(z)=1 /\left(z^{2}+1\right)
$$

the numerator is $g(z)=1$ and the denominator is $h(z)=z^{2}+1$.
The roots of $h(z)=(z-i)(z+i)$ are $z_{1}=i$ and $z_{2}=-i$, i.e., $h\left(z_{1}\right)=0$ and $h\left(z_{2}\right)=0$.

Since $h^{\prime}(z)=2 z$ we have

$$
h^{\prime}\left(z_{1}\right)=2 i \neq 0 \text { and } h^{\prime}\left(z_{2}\right)=-2 i \neq 0
$$

By Proposition 11.7.15, the function f has a simple pole at each of z_{1} and z_{2} where

$$
\operatorname{Res}\left(f, z_{1}\right)=\frac{g\left(z_{1}\right)}{h^{\prime}\left(z_{1}\right)}=\frac{1}{2 i} \text { and } \operatorname{Res}\left(f, z_{2}\right)=\frac{g\left(z_{2}\right)}{h^{\prime}\left(z_{2}\right)}=-\frac{1}{2 i} .
$$

The simple closed contour $\gamma=\{z \in \mathbb{C}:|z|=2\}$, i.e., the circle centered at 0 with radius 2 , encloses both simple poles of f. [Draw the picture]

For the winding numbers we have $I\left(\gamma, z_{1}\right)=1$ and $I\left(\gamma, z_{2}\right)=1$.
By the Residue Theorem we compute

$$
\frac{1}{2 \pi i} \oint_{\gamma} f(z) d z=\sum_{j=1}^{2} \operatorname{Res}\left(f, z_{j}\right) I\left(\gamma, z_{j}\right)=\frac{1}{2 i}-\frac{1}{2 i}=0
$$

What questions do you have?

Example 11.7.17. Compute

$$
\int_{-\infty}^{\infty} f(x) d x \text { for } f(x)=\frac{1}{1+x^{4}}
$$

The improper integral of f over \mathbb{R} converges by a comparison test with $1 /\left(1+x^{2}\right)$, i.e., since $1+x^{4} \geq 1+x^{2}$, then

$$
0 \leq \frac{1}{1+x^{4}} \leq \frac{1}{1+x^{2}}
$$

and the improper integral of $1 /\left(1+x^{2}\right)$ converges because

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{2}} d x=\left.\lim _{R \rightarrow \infty} \arctan (x)\right|_{-R} ^{R}=\pi<\infty
$$

Convergence of the improper integral of $1 /\left(1+x^{4}\right)$ over \mathbb{R} justifies writing

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x=\lim _{R \rightarrow \infty} \int_{-R}^{R} \frac{1}{1+x^{4}} d x
$$

We recognize that the integrand is equal to the complex-valued function

$$
f(z)=\frac{1}{1+z^{4}} \text { when } z \in \mathbb{R}
$$

The function $f(z)$ is complex differentiable except at the four roots of the denominator $h(z)=1+z^{4}$.

We can find these four roots using Euler's Formula as follows.
By writing

$$
-1=e^{i \pi+2 i n \pi}
$$

for an arbitrary integer n, the equation

$$
1+z^{4}=0 \text { becomes } e^{i \pi+2 i n \pi}=z^{4} .
$$

Taking fourth roots of both sides of this equation gives

$$
e^{i \pi / 4+n i \pi / 2}=z
$$

The root complex roots of $h(z)=z^{4}+1$ are correspond to the four distinct angles $\pi / 4,3 \pi / 4,5 \pi / 4,7 \pi / 4$ in $[0,2 \pi)$; the four roots are

$$
z_{1}=e^{i \pi / 4}, z_{2}=e^{3 i \pi / 4}, z_{3}=e^{5 i \pi / 4}, z_{4}=e^{7 i \pi / 4}
$$

There is one root in each quadrant of the complex plane.
The function f is meromorphic on $\mathbb{C} \backslash\left\{z_{1}, z_{2}, z_{3}, z_{4}\right\}$.
Since $h^{\prime}(z)=4 z^{3}$ and $h^{\prime}\left(z_{j}\right) \neq 0$ for all $j=1,2,3,4$, each point z_{j} is a simple pole for $f(z)=1 / h(z)$ with residue

$$
\operatorname{Res}\left(f, z_{j}\right)=\frac{1}{h^{\prime}\left(z_{j}\right)}=\frac{1}{4 z_{j}^{3}}
$$

Now for the "magic" of the Residue Theorem.

For $R \geq 2$, form the closed simple contour D that is the sum of the line γ from $-R$ to R and the top half C of the circle with center 0 and radius R traversed counterclockwise.
[Draw the picture]

This gives
$\oint_{D} f(z) d z=\int_{\gamma} f(z) d z+\int_{C} f(z) d z=\int_{-R}^{R} \frac{1}{1+x^{4}} d x+\int_{C} f(z) d z$.

The contour D encloses two simple poles of $f(z)$, the two in the first and second quadrant.

The residues of f at these poles are

$$
\begin{aligned}
& \operatorname{Res}\left(f, z_{1}\right)=\frac{1}{4\left(e^{i \pi / 4}\right)^{3}}=\frac{1}{4 e^{3 i \pi / 4}} \\
& \operatorname{Res}\left(f, z_{2}\right)=\frac{1}{4\left(e^{3 i \pi / 4}\right)^{3}}=\frac{1}{4 e^{9 i \pi / 4}}=\frac{1}{4 e^{i \pi / 4}}
\end{aligned}
$$

The winding numbers of D at the poles are

$$
I\left(D, z_{j}\right)=1 \text { for } j=1,2
$$

By the Residue Theorem we have

$$
\begin{aligned}
\oint_{D} \frac{1}{1+z^{4}} d z & =2 \pi i\left[\operatorname{Res}\left(\frac{1}{1+z^{4}}, z_{1}\right)+\operatorname{Res}\left(\frac{1}{1+z^{4}}, z_{2}\right)\right] \\
& =2 \pi i\left[\frac{1}{4 e^{3 i \pi / 4}}+\frac{1}{4 e^{i \pi / 4}}\right] \\
& =\frac{\pi i}{2}\left[e^{-3 i \pi / 4}+e^{-i \pi / 4}\right] \\
& =\frac{\pi i}{2}[\cos (3 \pi / 4)-i \sin (3 \pi / 4)+\cos (\pi / 4)-i \sin (\pi / 4)] \\
& =\frac{\pi i}{2}\left[-\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{i}{\sqrt{2}}\right] \\
& =\frac{\pi i}{2}\left(-\frac{2 i}{\sqrt{2}}\right) \\
& =\frac{\pi}{\sqrt{2}} .
\end{aligned}
$$

By the parameterization $\xi(\theta)=\operatorname{Re}^{i \theta}, \theta \in[0, \pi]$, of C we obtain

$$
\begin{aligned}
\left|\int_{C} \frac{1}{1+z^{4}} d z\right| & =\left|\int_{0}^{\pi} \frac{i R e^{i \theta}}{1+R^{4} e^{4 i \theta}} d \theta\right| \\
& \leq \int_{0}^{\pi}\left|\frac{i R e^{i \theta}}{1+R^{4} e^{4 i \theta} \mid}\right| d \theta \\
& =\int_{0}^{\pi} \frac{R}{\left|1+R^{4} e^{4 i \theta}\right|} d \theta \\
& \leq \int_{0}^{\pi} \frac{R}{\left|R^{4} e^{4 i \theta}\right|-1} d \theta \\
& =\frac{R \pi}{R^{4}-1}
\end{aligned}
$$

where for the last inequality we have used the "reverse" triangle inequality

$$
\left|R^{4} e^{4 i \theta}\right|-|-1| \leq\left|R^{4} e^{4 i \theta}-(-1)\right| .
$$

Letting $R \rightarrow \infty$ we obtain from

$$
\oint_{D} f(z) d z=\int_{-R}^{R} \frac{1}{1+x^{4}} d x+\int_{C} f(z) d z
$$

that

$$
\int_{-\infty}^{\infty} \frac{1}{1+x^{4}} d x=\oint_{D} f(z) d z=\frac{\pi}{\sqrt{2}}
$$

since

$$
\lim _{R \rightarrow \infty} \int_{C} f(z) d z=0
$$

What questions do you have?

