11.7 The Residue Theorem

March 25, 2020



As always (X, || - ||) is a complex Banach space.
Here is an outline for today.

e |solated Singularities

e Residues and Winding Numbers

e The Residue Theorem
First Reading Quiz Question:

e What are the three types of isolated singularities that a
holomorphic function can have?

e How is the residue of a holomorphic function at an isolated
singularity computed?



Definition 11.7.1. For a point zg € C, an € > 0, and the
punctured open disk

U={zeC:0<|z— 2| <€},

for f : U — X holomorphic, we say that zy is an isolated
singularity of f if f is not assumed complex differentiable at zj.
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For an isolated singularity zg of f the principal part of the Laurent

series
oo

Z ar(z — zo)k

k=—o0

of f on B(zy,€) \ {z} is the series

—1

Z ax(z — z0)¥.

k=—0o0

We use the principal part to classify isolated singularities.



Definition. An isolated singularity zy of f is called a removable
singularity if the principal part of the Laurent series of f about z
is zero, i.e., a =0 forall k =—-1,—-2,-3,....

=

If £ has a removable singularity at zp, then f extends to a
holomorphic function on B(zy, €) by means of the power series
S 20 0 ak(z — z0)* convergent on B(zp, ).

Example. The function

COS( 1 1 o0 k 2k o0 k 2k—2
f(2) = == Z -y ke
z2 (2k)
1 2

—

has a removable singular at the isolated singularity zy = 0 of f.



Definition. An isolated singular zg of f is called a pole of order
N € N if the principal part of the Laurent series of f about zy has
the form

l.e., a = 0 for all Kk < —N in the Laurent series for f about z.

A pole of order 1 is called a simple pole.

Example. The function /
sin(z) 1 o= (-1)kz2+1 1 1 2z
(2) == = 5 ;) Qk+1) 2 6z 5"

has a pole of order N = 3 at the isolated singularity zg = 0 of f.



Definition. An isolated singularity zy of f is called an essential
singularity if the principal part of the Laurent series for f about z
has infinitely many nonzero terms, i.e., ax # 0 for infinitely many
—k € N. A

Example. The function

(1) o (D123
f(z) =sin (E) =2 k1)

has an essential singularity at the isolated singularity zg = 0 of f.



What questions do you have?



Definition 11.7.4. For an open set U in C and finitely many
distinct points zj,..., 2z, in U, a function

f:U\{z1,...,z,} = X

is called meromorphic if f is holomorphic on the open set
U\{z,...,z,} with f having poles at each z.

Example 11.7.5. For polynomials p and g with g not identically
equal to 0, the rational function

p(z)/a(2),

in lowest terms (i.e., any common factors that p and g have have
already been cancelled), is a meromorphic function on
C\{zi,...,zx} where z1, ...,z are the distinct roots of q.

FYI: It is standard practice is always assume that a rational
function is given in lowest terms, unless explicitly told otherwise.



Remark. We have already seen that the coefficient a_; of the
power (z — zg) ™! in the Laurent series of a function f holomorphic
on a punctured disk B(zp,€) \ {z} is the quantity needed when
computing contour integrals of f on simply closed curves with zy in
its interior.

Because of the importance of this coefficient, we give it a name.

Definition 11.7.6. For a holomorphic f : B(zp,€) \ {zo} — X and
simple close curve v in B(zp,€) \ {z}, the quantity

1 f(z) dz

271 ~

—_———
is called the residue of f at zy and is denoted by Res(f, zp).

— Y

Proposition 11.7.7. If f : B(zp,¢€) \ {z0} — X is holomorphic,

then Res(f, z) is the coefficient a_1 of the power (z — z)~1 in

the Laurent series of f about zj.




Proposition 11.7.8. Suppose a holomorphic f has an isolated
singularity at zg.
(i) The isolated singularity at zp is removable if and only if

lim,_,,, f(z) exists (as a complex number; the book
inaccurately uses the term finite).

(i) If for some nonnegative integer k the limit
lim,_,(z — 20)f(z) exists (as a complex number), then the
isolated singularity zy of f is either a removable singularity or
a pole of order equal to or less than k.

(i) If the limit lim,_, ,,(z — z9)f(z) exists (as a complex number),
then

—> Res(f, 20) = lim (z — 2)f(2).
zZ—r 2 ,

The proof of this is HW (Exercise 11.29).



What questions do you have?



Journey to the Residue Theorem

Consider the contour integral

—_— i% 1 d=
7

2wl J., z — 29

for the closed contour « : [0, 2k7] — C given by y(t) = zy + €'’
for a positive integer k.

Computing this contour integral gives
2k 2k
1 1 1 T 2k
> — —(ie") df = — df = — = k.
27Ti/0 e’e(le ) 21 Jo 2T

The closed contour v goes around zy in the counterclockwise
direction k times while the residue of 1/(z — zg) at zg is 1.

If this same curve « is traversed in the clockwise direction, i.e.,
v(0) = zo + e~'?, then we would get —k as the value of the
contour integral. -



Furthermore, if v is closed contour that does not enclose zg, then

1/(z — zp) is holomorphic on a simply connected open set
containing v but not containing zy, so that by the Cauchy-Goursat

Theorem we have

1 1
§l§ dz = 0.
211 J z — 29 —




These observations motivate the notion of the winding number.

Definition 11.7.9. For a closed contour v in C and z a point of
C not on ~, the winding number of v with respect to z is the
quantity

— I(v,2)= ! &lg ! dz.

2wl J., z — 29

Lemma 11.7.12. For a simply connected open set U in C, a
closed contour v in U, and a point z5 € U not on v, if

— b
M@ =D o S
k=0

is uniformly convergent on compact subsets of U\ {z}, then there
holds y

—> 5 yg N(z) dz = Res(N, z0)! (7, zo).
1 y i _
The proof of this is HW (Exercise 11.30).




What questions do you have?



Theorem 11.7.13 (The Residue Theorem). For a simply
connected U in C and finitely many points z1,...,z, € U, if

f:U\{z1,...,z,} = X

is holomorphic and « is a closed contour in U\ {z,...,z,}, then

L f(z) dz = S Res(, 2)1(1, 7).

2TI ~ =
& — —

Second Quiz Question: The Cauchy-Goursat Theorem and the
Cauchy Integral Formula are special cases of the Residue Theorem.

True



The Residue Theorem has the Cauchy-Goursat Theorem as a
special case.

When f : U — X is holomorphic, i.e., there are no points in U at
which f is not complex differentiable, and v in U is a simple closed
curve, we select any zp € U \ 7.

The residue of f at zg is 0 by Proposition 11.7.8 part (iii), i.e.,

Res(f,z9) = lim (z — z9)f(z) = 0;

Z—r 2 —

hence, regardless of the value of /(7, zp), the Residue Theorem

gives
%f(z) dz = 0.
!




The Residue Theorem has Cauchy’s Integral formula also as special

case.
When f : U — X is holomorphic, and zy € U, then the function

—» g(z) = f(z)/(z — z9) is holomorphic on U\ {z}, so for any simple
closed curve v in U enclosing zg the Residue Theorem gives

1 % f(Z) dz — 1 g(z) dz = Res(g,Zo)/(%ZO)

2wl J., z — 29 27i ~

here I(,zp) = 1 because + is a simple closed curve enclosing z,
and Res(g, z0) = f(2p) because using the power series for f about

zo gives the Laurent series

V4 > (k)Z > Z

in which the coefficient of (z — z9) ™! is f(z0).




What questions do you have?



To use the Residue Theorem requires that we compute the
required residues.

We have seen two ways to compute the residue of f at a point zy:
by computing the Laurent series of f on B(zy,€) \ {z}, or by
Proposition 11.7.8 part (iii).

Of the many other means of computing Res(f, zp) we mention
another one.

Proposition 11.7.15. Suppose g : B(zp,€¢) — X and

h : B(zy,€) — C are holomorphic. If g(z) # 0, h(z) = 0, and
h(z0) # 0, then the function g(z)/h(z) : B(z0,€) \ {20} — X is
meromorphic with a simple pole at zp and

g(2) _ &)
— e (550) i =




Note. While you are responsible for knowing and using Proposition
11.7.15, you are NOT responsible for the next proposition on
computing the residue for a pole of order 2.

It is given to show you how complicated residue calculations can
become for nonsimple poles.

Proposition. Suppose g : B(zp,e) — X and h: B(zp,e) — C are
holomorphic. If g(z) # 0, h(zp) = 0, h'(z9) =0, and h"(z) # 0,
then g(z)/h(z) : B(zp,€) \ {z0} — X is meromorphic with a pole
of order 2 at zp, and -

§(z) '\ _28'(20) 2g(20)h®(z0)
fes (h(z)’ 0) S w) T WP

REMEMBER YOU ARE NOT RESPONSIBLE FOR THIS
FORMULA.



Remark. A truly hideous formula for the residue of a pole of order
N is given in my lecture notes.

It involves symbolic cofactor expansion of an N x N matrix.
Need | say more??77?

Remark. Unfortunately for an essential singularity of f at zg there
are no “simple” formulas for computing the residue of f at Zz.

We typically rely on computing, somehow, the Laurent series for f
at zp to find its residue at zj.



Example (in lieu of 11.7.16). For the holomorphic function
f(z)=1/(z>+1)
the numerator is g(z) = 1 and the denominator is h(z) = z? + 1.

The roots of h(z) =(z—1i)(z+ i) are zz =i and zp = —i, i.e,
h(Zl) =0 and h(ZQ) = 0. —

Since h'(z) = 2z we have

“

h(z1) =2i # 0 and K (z) = —2i # 0.

By Proposition 11.7.15, the function f has a simple pole at each of
z1 and z» where

—p Res(f,z1) = h,(éll)) - % and Res(f, z2) = f,((z)) —%.

® )




The simple closed contour v = {z € C : |z| = 2}, i.e., the circle
centered at 0 with radius 2, encloses both simple poles of f.

[Draw the picture]

For the winding numbers we have /(v,z1) =1 and I(vy,z) = 1.

By the Residue Theorem we compute

1 : 11
— (pf ~ (f )=
— 2m'7% () dz ;Res )0 5) = 5; — 5

0
o

[



What questions do you have?



Example 11.7.17. Compute
1

2 /_(:f(x) dx for f(x) = Tt

The improper integral of f over R converges by a comparison test
with 1/(1 + x?), i.e., since 1 + x* > 1 + x2, then

1 < 1
14+ x% = 14 x2

0 <

and the improper integral of 1/(1 4 x?) converges because

R

=17 < Q.

R—>OO —R

< 1
/_OO 532 dx = lim arctan(x)

Convergence of the improper integral of 1/(1 + x*) over R justifies
writing

00 1 - R 1
__,& 7 dx = lim 7 ax.
oo LA X R—oo J_p 14+ x

W




We recognize that the integrand is equal to the complex-valued

function
1

— f(2)= T 7 when z € R.

The function f(z) is complex differentiable except at the four roots
of the denominator h(z) = 1 + z*.

We can find these four roots using Euler's Formula as follows.

By writing

for an arbitrary integer n, the equation

—= 14 z* = 0 becomes /™2 = 74,

Taking fourth roots of both sides of this equation gives

‘P e/7r/4—|—nl7r/2 - 7



The root complex roots of h(z) = z* +1 are correspond to the four
distinct angles 7 /4, 37 /4, 57r/4 77‘(‘/4 in [0,27); the four roots are

vv

’ 7y = e’”/4,22 _ e3l7r/47Z3 _ e5/7r/4,z4 _ e7/7r/4.
g
There is one root in each quadrant of the complex plane.

The function f is meromorphic on C\ {z1, 25, z3, z4 }.

— Since W' (z) = 42> and H/(z) # 0 for all j = 1,2,3,4, each point z
is a simple pole for f(z) = 1/h(z) with residue

——v Res(f, zj) = () =13

Now for the “magic” of the Residue Theorem.
L AA”




For R > 2, form the closed simple contour D that is the sum of
the line v from —R to R and the top half C of the circle with
center 0 and radius R traversed counterclockwise.

[Draw the picture]

- /] kR =z

This gives é

C
= 7 OQ.Z‘?Q)



The contour D encloses two simple poles of f(z), the two in the
first and second quadrant.

The residues of f at these poles are

1 1

Re,5) = ey = g /
1 1 1

Res(f, 22) = = B

(e3im/4)3  4e9im/4  4eiT/4]

The winding numbers of D at the poles are

I(D,z)=1for j=1,2.

P




By the Residue Theorem we have

1 al 1 1
51%1_'_24 dz :372 _Res(1+z4,21> +Res(m,zz>]

- 1 1
= 27 . + — ]

P



By the parameterization £(0) = Re?, 6 € [0, 7], of C we obtain

1 T jRel®
dz| = — do
/C 1424 Z‘ /0 1+ R4e*t '
4 iRe'?
< — | do

T R
- — df
J, e

™R
< . df
= /0 [Rée4i0] _ 1

Rn J

T RA T = X,

where for the last inequality we have used the “reverse” triangle
inequality

\R4e4i9\ o ‘1‘ < |R4e4i0 . 1|



Letting R — oo we obtain from

dx

that

-
_001+X dx %f(z)dz—ﬁ

-

since

R—o0

im /Cf(z) dz =0,

P

o



What questions do you have?



