12.1 Projections
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Throughout we assume that V is a vector space over a field F.

Recall that Z (V) is the vector space of linear operators on V.

Definition 12.1.1. A linear operator P € £ (V) is called a
projection if
P> =P.

Example 12.1.2. If P € Z(V) is a projection, then

—

—> | -PcZ(V)

is also a projection, where | € Z(V) is the identity operator
defined by /(v) = v for all v € V.

You have it as HW (Exercise 12.1) to show that /| — P is a
projection.

The linear operator | — P is called the complementary projection of
P (and we will see why shortly).




Second Reading Quiz Question: An inner product is required to
define a projection.

False

Lemma 12.1.3. Suppose P € £ (V) is a projection. Then
-~ (i) y € Z(P) if and only if Py =y, and
~s (i) A(P)=2(I - P).

Proof. (i) If Py =y, then y € Z(P). <«—
— If y € Z(P), then there exists x € V such that y = Px.
Since P2 = P we have Py = P°x = Px =.

uv--

(i) We have x € #(P) if and only if Px = 0. <=

We also have Px =0 if and only if (/ — P)x =x — Px =x.
Because | — P is a projection by Example 12.1.2, by_—part——i) we
have (I — P)x = x if and only if x € Z(I — P). —

Thus we have x € #(P) if and only if x € Z(I — P).




Remark. Because | — P is a projection when P is a projection, we
can apply part (ii) of Lemma 12.1.3 to / — P to get

Nl - P) = Z(P).

—

Theorem 12.1.4. If P € £(V) is a projection, then

V = %(P)® N (P).

—

—> Corollary 12.1.5. For dim(V) < oo, if P € Z(V) is a projection
with § = [s1,...,sk] a basis for Z(P) and T = [t1,..., 1] a basis
for A4°(P), then SU T is a basis for V (i.e., k +/ = dim(V)) and
the block matrix EBresentatig;of P in the basis SU T is

0
— Bd
where [ is the k x k identity matrix, and each 0 is a zero matrix of
appropriate size.



What questions do you have?



Theorem 12.1.6. For subspaces W; and W5 of V' (not assumed
finite dimensional), if V = W; @& W, then there exists a unique
projection P € Z (V) such that

%(P) = W1 and JV(P) = WQ.

Definition. The unique projection P € Z(V) associated to

V =W; & W5 in Theorem 12.1.6 is called the projection onto W;
along W5.

[Draw the picture]




Note. For a projection P € Z(V), we have by Theorem 12.1.4
that

V=2%(P)® 4 (P),

so that with Wy = #Z(P) and W, = .4 (P), the projection P is the
unique projection onto Z(P) along A4 (P).

Note. We sometimes says that a projection P is a projection onto
Z(P) without reference to along .#"(P) because the along part is
always given by 47 (P). -

Example. There do exist distinct projections P, Q € £ (V) with
Z(P) =2(Q) and A (P) # AN (Q). o

For example, the projections P, Q € .Z(C?) defined by

—

P(e1) = e1, P(e2) = 0, Q(e1) = e1, Q(er + e2) = 0,

fe ]

has the same range but different kernels.
P——



Remark. In a finite dimensional inner product space (V, (-,)), the
projection P onto W; along W5 is an orthogonal projection only
when ;

Wsr = Wi

In an infinite dimensional inner product space (V, (-,-)), a
projection P onto W; along W5 is an orthogonal projection only
when

e Wi is a closed subspace, and

o Wo= Wi
Note. Sometimes nonorthogonal projections are called oblique
projections. -

a—




What questions do you have?



Example (in lieu of 12.1.7). Consider the vector space
V = C([0, 1], C) equipped with the inner product

1—
(F,g) = /O ADe(t) dt. <—

Define the operator P : V — V by P(f) is the constant function
from [0, 1] to C with value 7(0).

The operator P is linear because for f,g € V and a, b € C there
holds

~——> P(af + bg) = af(0) + bg(0) = aP(f) + bP(g).

— = -
The operator P € Z(V) is a projection because for all f € V
there holds |

P*(f) = P(f(0)) = £(0) = P(f).

R e st S o

The subspace Z(P) consists of the constant functions from [0, 1]
to C. _



The subspace .4'(P) consists of those continuous functions
f :[0,1] — C such that f(0) = 0.

By Theorem 12.1.4 there holds V = Z(P) ® A4 (P), i.e., each
function f € V can be written uniquely as o

4
—2=> f(t) =£(0) + (£(t) — £(0))
for f(0) € Z(P) and f(t) — f(0) € A (P).

With Wy = Z(P) and W, = A4 (P), we have by Theorem 12.1.6

that P is the unique projection onto Wi along W.
O— ) #

Is P an orthogonal projection?

The answer is no because there exists f € Wj and g € W, such
that (f,g) #0, i.e.,, for f =1 and g(t) =t we have

= ]

1
— (f.g)= [ td=1270



Recall from Section 4.2 that a subspace W of V is invariant for
L e Z(V) or that W is L-invariant if

C L(W) C@

Theorem 12.1.8. For L € £(V), a subspace W of V is
L-invariant if and only if for@ projection P € .Z(V) onto W
there holds

“Lp-piP ol mosd commuting

Theorem 12.1.9. Suppose Wi, W5 are subspaces of V for which

2V =W d W, and L € Z(V). Then Wj and W, are both
L—invariantLif and only if‘ the projection P onto W; along W,
satisfies

LP = PL.

pm——



Examples. (i) An invariant space for L = [?) _01] is

S _

~» W = span(e;) and P = [(1) _01] is a projection onto W because

e L N

and Z(P) = span(e;) = W. We verify Theorem 12.1.8:

O

—s =[5 ][ )= S

e




(i) Complementary invariant subspaces for L = [é _01] are

W1 = span(er) and W5 = span(ep). (l; W@Wz

: 1 : L
The linear operator P = [O 8] Is the projection onto W along

-

W5 because

o=l -] Y-

and Z(P) = span(e;) = Wi and A (P) = span(e;) = Wh. We
verify Theorem 12.1.9: = - -

and L4
1 02 O 2 0
E_ [0 O] [O —1] - [O 0] _ﬂL—'



What questions do you have?



First Reading Quiz Question: What are the properties of the rank-1
eigenprojections P; of a simple finite dimensional linear operator A?



Recall for i,j = 1,...,n that §; is the (i,)*® entry of the n x n

identity matrix /. — —
Proposition 12.1.10. Suppose A € M,(C) is a simple operator
whose distinct (complex) eigenvalues are A1,...,\,. Let

—> S € M,(C) be the matrix whose columns are the corresponding
—>right eigenvectors of A, and denote the i*" column of S by r;. Let

—> E;F, ..., /Y be the corresponding left eigenvectors of A, i.e., the

—> rows of S™1. Define the n x n matrices P, =1, l}, k=1,...,n.
Then - S

—= (i) llrj =4 foralli,j=1,...,n,

— (ii) PiP; = 0;jP; forall i,j =1,...,n, &<
— (iii) PPA=AP; = \;P;foralli=1,...,n,

__)(IV) 27:1 P,' — I, and
—> (v) A=>""1 A\iPi (Spectral Decomposition).




Remark. The matrices P; are projections by part (ii) of
Proposition 12.1.10 because

= P?=PiPi=06;P =P

-

The rank of each of these projections is one because the columns
of P; are all scalar multiples of the nonzero right eigenvector r;.

—
C—

Indeed the range of P is the one-dimensional eigenspace of A
corresponding to the eigenvalue A;.

Definition. For a simple operator A € M,,(C) the rank-1
projections Pi,..., P, in Proposition 12.1.10 are called the
eigenprojections of A.




Example (in lieu of 12.1.11). The eigenvalues and right
eigenvectors of the simple

A= [411 ﬂ € My(C)

are

— A\ =3, 1“1:[;], A2 = —1, 1“2:[_12]-

The matrix of right eigenvectors

has inverse
5_1:_1 —2 -1 :1 2 1
4 -2 1 4 12 —1|°
The rows of S~ give left eigenvectors of A:

—_—> eT:%[z 1],£T:1[2 ~1].



The eigenprojections are

—_— Plzrle}“ZEH 2 1]:1[2 1]%

4 |2 4 (4 2
and @r) (1F) 272
11 12 -1

Each of P; and P, has rank 1, and we can verify properties (ii)-(v)
listed in Proposition 12.1.10.

For property (ii) we have

12 11[2 -1] [o 0 /
>R =16 14 2] |4 2]_[0 o]_o’
b2 12 1__21_i84_121_P/
PT 164 2] |4 2] 16(16 8] 4[4 2] "
pp_ 12 —1]f2 -1]_1[8 —4]_1[2 -1
2716 |4 2||-4 2| 16|-16 8| 4|-4 2

=P, /



For property (iii) we have

1
—
24—
| I— |
Mo <
I ~_
_ ¢
P 1 11
T TN
-
a\/__ N N ]
N O ™M™ O M AR Q.
(qV]
L L \A
©c Y o Y|+t —Iw I
— <t < l i —
[ I = = Y
_2
1 1 1 1 14
— AN < 24
AN < - < N _ —
L ] 1 ] L _21_4
_11__12__11_ $_
< I

_1 4__2 4__1 4_

Q.
it It It At (<

Y

< T4 X
< 4 < d

N\~



For property (iv) we have
2 1 n 2 -1
4 2| T =4 2
4 0
0 4
Finally for property (v), the spectral decomposition, we have

3[2 1] 12 -1
APrt AaPe = [4 2]_1[—4 2]

gy

= A.

—0 Pi+Pr=



What questions do you have?
? 1 f = )

S'LJ = (o f C %)



