
12.1 Projections

March 27, 2020

 



Throughout we assume that V is a vector space over a field F.

Recall that L (V ) is the vector space of linear operators on V .

Definition 12.1.1. A linear operator P 2 L (V ) is called a

projection if

P2
= P .

Example 12.1.2. If P 2 L (V ) is a projection, then

I � P 2 L (V )

is also a projection, where I 2 L (V ) is the identity operator

defined by I (v) = v for all v 2 V .

You have it as HW (Exercise 12.1) to show that I � P is a

projection.

The linear operator I � P is called the complementary projection of

P (and we will see why shortly).



Second Reading Quiz Question: An inner product is required to

define a projection.

False

Lemma 12.1.3. Suppose P 2 L (V ) is a projection. Then

(i) y 2 R(P) if and only if Py = y, and

(ii) N (P) = R(I � P).

Proof. (i) If Py = y, then y 2 R(P).
If y 2 R(P), then there exists x 2 V such that y = Px.
Since P2

= P we have Py = P2x = Px = y.

(ii) We have x 2 N (P) if and only if Px = 0.

We also have Px = 0 if and only if (I � P)x = x� Px = x.
Because I � P is a projection by Example 12.1.2, by part (i) we

have (I � P)x = x if and only if x 2 R(I � P).
Thus we have x 2 N (P) if and only if x 2 R(I � P). ⇤



Remark. Because I � P is a projection when P is a projection, we

can apply part (ii) of Lemma 12.1.3 to I � P to get

N (I � P) = R(P).

Theorem 12.1.4. If P 2 L (V ) is a projection, then

V = R(P)� N (P).

Corollary 12.1.5. For dim(V ) < 1, if P 2 L (V ) is a projection

with S = [s1, . . . , sk ] a basis for R(P) and T = [t1, . . . , tl ] a basis

for N (P), then S [ T is a basis for V (i.e., k + l = dim(V )) and

the block matrix representation of P in the basis S [ T is


I 0

0 0

�

where I is the k ⇥ k identity matrix, and each 0 is a zero matrix of

appropriate size.

00



What questions do you have?



Theorem 12.1.6. For subspaces W1 and W2 of V (not assumed

finite dimensional), if V = W1 �W2, then there exists a unique

projection P 2 L (V ) such that

R(P) = W1 and N (P) = W2.

Definition. The unique projection P 2 L (V ) associated to

V = W1 �W2 in Theorem 12.1.6 is called the projection onto W1

along W2.

[Draw the picture]

w



Note. For a projection P 2 L (V ), we have by Theorem 12.1.4

that

V = R(P)� N (P),

so that with W1 = R(P) and W2 = N (P), the projection P is the

unique projection onto R(P) along N (P).

Note. We sometimes says that a projection P is a projection onto

R(P) without reference to along N (P) because the along part is

always given by N (P).

Example. There do exist distinct projections P ,Q 2 L (V ) with

R(P) = R(Q) and N (P) 6= N (Q).

For example, the projections P ,Q 2 L (C2
) defined by

P(e1) = e1,P(e2) = 0,Q(e1) = e1,Q(e1 + e2) = 0,

has the same range but di↵erent kernels.



Remark. In a finite dimensional inner product space (V , h·, ·i), the
projection P onto W1 along W2 is an orthogonal projection only

when

W2 = W?
1 .

In an infinite dimensional inner product space (V , h·, ·i), a
projection P onto W1 along W2 is an orthogonal projection only

when

• W1 is a closed subspace, and

• W2 = W?
1 .

Note. Sometimes nonorthogonal projections are called oblique

projections.



What questions do you have?



Example (in lieu of 12.1.7). Consider the vector space

V = C ([0, 1],C) equipped with the inner product

hf , gi =
ˆ 1

0
f (t)g(t) dt.

Define the operator P : V ! V by P(f ) is the constant function

from [0, 1] to C with value f (0).

The operator P is linear because for f , g 2 V and a, b 2 C there

holds

P(af + bg) = af (0) + bg(0) = aP(f ) + bP(g).

The operator P 2 L (V ) is a projection because for all f 2 V
there holds

P2
(f ) = P(f (0)) = f (0) = P(f ).

The subspace R(P) consists of the constant functions from [0, 1]
to C.



The subspace N (P) consists of those continuous functions

f : [0, 1] ! C such that f (0) = 0.

By Theorem 12.1.4 there holds V = R(P)� N (P), i.e., each
function f 2 V can be written uniquely as

f (t) = f (0) + (f (t)� f (0))

for f (0) 2 R(P) and f (t)� f (0) 2 N (P).

With W1 = R(P) and W2 = N (P), we have by Theorem 12.1.6

that P is the unique projection onto W1 along W2.

Is P an orthogonal projection?

The answer is no because there exists f 2 W1 and g 2 W2 such

that hf , gi 6= 0, i.e., for f = 1 and g(t) = t we have

hf , gi =
ˆ 1

0
t dt = 1/2 6= 0.

I



Recall from Section 4.2 that a subspace W of V is invariant for

L 2 L (V ) or that W is L-invariant if

L(W ) ⇢ W .

Theorem 12.1.8. For L 2 L (V ), a subspace W of V is

L-invariant if and only if for any projection P 2 L (V ) onto W
there holds

LP = PLP .

Theorem 12.1.9. Suppose W1,W2 are subspaces of V for which

V = W1 �W2, and L 2 L (V ). Then W1 and W2 are both

L-invariant if and only if the projection P onto W1 along W2

satisfies

LP = PL.

F
almostInuting



Examples. (i) An invariant space for L =


2 0

0 �1

�
is

W = span(e1) and P =


1 �1

0 0

�
is a projection onto W because

P2
=


1 �1

0 0

� 
1 �1

0 0

�
=


1 �1

0 0

�
= P

and R(P) = span(e1) = W . We verify Theorem 12.1.8:

LP =


2 0

0 �1

� 
1 �1

0 0

�
=


2 �2

0 0

�

PL =


1 �1

0 0

� 
2 0

0 �1

�
=


2 1

0 0

�
6= LP

but

PLP =


2 1

0 0

� 
1 �1

0 0

�
=


2 �2

0 0

�
= LP .



(ii) Complementary invariant subspaces for L =


2 0

0 �1

�
are

W1 = span(e1) and W2 = span(e2).

The linear operator P =


1 0

0 0

�
is the projection onto W1 along

W2 because

P2
=


1 0

0 0

� 
1 0

0 0

�
=


1 0

0 0

�
= P

and R(P) = span(e1) = W1 and N (P) = span(e2) = W2. We

verify Theorem 12.1.9:

LP =


2 0

0 �1

� 
1 0

0 0

�
=


2 0

0 0

�

and

PL =


1 0

0 0

� 
2 0

0 �1

�
=


2 0

0 0

�
= LP .

W Wz

I



What questions do you have?



First Reading Quiz Question: What are the properties of the rank-1

eigenprojections Pi of a simple finite dimensional linear operator A?



Recall for i , j = 1, . . . , n that �ij is the (i , j)th entry of the n ⇥ n
identity matrix I .

Proposition 12.1.10. Suppose A 2 Mn(C) is a simple operator

whose distinct (complex) eigenvalues are �1, . . . ,�n. Let

S 2 Mn(C) be the matrix whose columns are the corresponding

right eigenvectors of A, and denote the i th column of S by ri . Let
`T1 , . . . , `

T
n be the corresponding left eigenvectors of A, i.e., the

rows of S�1
. Define the n ⇥ n matrices Pk = rk`Tk , k = 1, . . . , n.

Then

(i) `Ti rj = �ij for all i , j = 1, . . . , n,

(ii) PiPj = �ijPi for all i , j = 1, . . . , n,

(iii) PiA = APi = �iPi for all i = 1, . . . , n,

(iv)
Pn

i=1 Pi = I , and

(v) A =
Pn

i=1 �iPi (Spectral Decomposition).



Remark. The matrices Pi are projections by part (ii) of

Proposition 12.1.10 because

P2
i = PiPi = �iiPi = Pi .

The rank of each of these projections is one because the columns

of Pi are all scalar multiples of the nonzero right eigenvector ri .

Indeed the range of P is the one-dimensional eigenspace of A
corresponding to the eigenvalue �i .

Definition. For a simple operator A 2 Mn(C) the rank-1

projections P1, . . . ,Pn in Proposition 12.1.10 are called the

eigenprojections of A.



Example (in lieu of 12.1.11). The eigenvalues and right

eigenvectors of the simple

A =


1 1

4 1

�
2 M2(C)

are

�1 = 3, r1 =


1

2

�
, �2 = �1, r2 =


1

�2

�
.

The matrix of right eigenvectors

S =
⇥
r1 r2

⇤
=


1 1

2 �2

�

has inverse

S�1
= �1

4


�2 �1

�2 1

�
=

1

4


2 1

2 �1

�
.

The rows of S�1
give left eigenvectors of A:

`T1 =
1

4

⇥
2 1

⇤
, `T2 =

1

4

⇥
2 �1

⇤
.



The eigenprojections are

P1 = r1`
T
1 =

1

4


1

2

� ⇥
2 1

⇤
=

1

4


2 1

4 2

�

and

P2 = r2`
T
2 =

1

4


1

�2

� ⇥
2 �1

⇤
=

1

4


2 �1

�4 2

�
.

Each of P1 and P2 has rank 1, and we can verify properties (ii)-(v)

listed in Proposition 12.1.10.

For property (ii) we have

P1P2 =
1

16


2 1

4 2

� 
2 �1

�4 2

�
=


0 0

0 0

�
= 0,

P2
1 =

1

16


2 1

4 2

� 
2 1

4 2

�
=

1

16


8 4

16 8

�
=

1

4


2 1

4 2

�
= P1,

P2
2 =

1

16


2 �1

�4 2

� 
2 �1

�4 2

�
=

1

16


8 �4

�16 8

�
=

1

4


2 �1

�4 2

�

= P2.

2 11 1 27 2 2



For property (iii) we have

AP1 =
1

4


1 1

4 1

� 
2 1

4 2

�
=

1

4


6 3

12 6

�
,

P1A =
1

4


2 1

4 2

� 
1 1

4 1

�
=

1

4


6 3

12 6

�
= AP1 =

3

4


2 1

4 2

�
= �1P1

AP2 =
1

4


1 1

4 1

� 
2 �1

�4 2

�
=

1

4


�2 1

4 �2

�
,

P2A =
1

4


2 �1

�4 2

� 
1 1

4 1

�
=

1

4


�2 1

4 �2

�

= AP2 = �1

4


2 �1

�4 2

�
= �2P2.

D b b

D



For property (iv) we have

P1 + P2 =
1

4

⇢
2 1

4 2

�
+


2 �1

�4 2

��

=
1

4


4 0

0 4

�

= I .

Finally for property (v), the spectral decomposition, we have

�1P1 + �2P2 =
3

4


2 1

4 2

�
� 1

4


2 �1

�4 2

�

=


1 1

4 1

�

= A.



What questions do you have?

Sir
1 if Ej
0 if it j


