# 12.1 Projections 

March 27, 2020

Throughout we assume that $V$ is a vector space over a field $\mathbb{F}$.
Recall that $\mathscr{L}(V)$ is the vector space of linear operators on $V$.
Definition 12.1.1. A linear operator $P \in \mathscr{L}(V)$ is called a projection if

$$
P^{2}=P
$$

Example 12.1.2. If $P \in \mathscr{L}(V)$ is a projection, then

$$
\longrightarrow \quad I-P \in \mathscr{L}(V)
$$

is also a projection, where $I \in \mathscr{L}(V)$ is the identity operator defined by $I(v)=v$ for all $v \in V$.

You have it as HW (Exercise 12.1) to show that $I-P$ is a projection.

The linear operator $I-P$ is called the complementary projection of $P$ (and we will see why shortly).

Second Reading Quiz Question: An inner product is required to define a projection.

## False

Lemma 12.1.3. Suppose $P \in \mathscr{L}(V)$ is a projection. Then
$\rightarrow$ (i) $\mathrm{y} \in \mathscr{R}(\underset{\sim}{P})$ if and only if $P \mathrm{y}=\mathrm{y}$, and
(ii) $\mathscr{N}(\underline{P})=\mathscr{R}(I-P)$.

Proof. (i) If $P \mathrm{y}=\mathrm{y}$, then $\mathrm{y} \in \mathscr{R}(P)$.
$\rightarrow$ If $y \in \mathscr{R}(P)$, then there exists $\mathrm{x} \in V$ such that $\mathrm{y}=P \mathrm{x}$.
Since $P^{2}=P$ we have $P \mathrm{y}=P^{2} \mathrm{x}=P \mathrm{x}=\mathrm{y}$.
(ii) We have $\mathrm{x} \in \mathscr{N}(P)$ if and only if $P \mathrm{x}=0$.

We also have $P \mathrm{x}=0$ if and only if $(I-P) \mathrm{x}=\mathrm{x}-P \mathrm{x}=\mathrm{x}$.
Because $I-P$ is a projection by Example 12.1.2, by part (i) we have $(I-P) \mathrm{x}=\mathrm{x}$ if and only if $\mathrm{x} \in \mathscr{R}(I-P)$.
Thus we have $\mathrm{x} \bar{\in} \mathscr{N}(P)$ if and only if $\mathrm{x} \in \mathscr{R}(I-P)$.

Remark. Because $I-P$ is a projection when $P$ is a projection, we can apply part (ii) of Lemma 12.1 .3 to $I-P$ to get

$$
\mathscr{N}(I-P)=\mathscr{R}(P)
$$

Theorem 12.1.4. If $P \in \mathscr{L}(V)$ is a projection, then

$$
V=\mathscr{R}(P) \oplus \mathscr{N}(P) .
$$

Corollary 12.1.5. For $\operatorname{dim}(V)<\infty$, if $P \in \mathscr{L}(V)$ is a projection with $S=\left[\mathrm{s}_{1}, \ldots, \mathrm{~s}_{k}\right]$ a basis for $\mathscr{R}(P)$ and $T=\left[\mathrm{t}_{1}, \ldots, \mathrm{t}_{l}\right]$ a basis for $\overline{\mathscr{N}}(P)$, then $S \cup T$ is a basis for $V$ (i.e., $k+I=\operatorname{dim}(V)$ ) and the block matrix representation of $P$ in the basis $S \cup T$ is

where $I$ is the $k \times k$ identity matrix, and each 0 is a zero matrix of appropriate size.

What questions do you have?

Theorem 12.1.6. For subspaces $W_{1}$ and $W_{2}$ of $V$ (not assumed finite dimensional), if $V=W_{1} \oplus W_{2}$, then there exists a unique projection $P \in \mathscr{L}(V)$ such that

$$
\mathscr{R}(P)=W_{1} \text { and } \mathscr{N}(P)=W_{2}
$$

Definition. The unique projection $P \in \mathscr{L}(V)$ associated to $V=W_{1} \oplus W_{2}$ in Theorem 12.1.6 is called the projection onto $W_{1}$ along $W_{2}$.
[Draw the picture]


Note. For a projection $P \in \mathscr{L}(V)$, we have by Theorem 12.1.4 that

$$
V=\mathscr{R}(P) \oplus \mathscr{N}(P)
$$

so that with $W_{1}=\mathscr{R}(P)$ and $W_{2}=\mathscr{N}(P)$, the projection $P$ is the unique projection onto $\mathscr{R}(P)$ along $\mathscr{N}(P)$.

Note. We sometimes says that a projection $P$ is a projection onto $\mathscr{R}(P)$ without reference to along $\mathscr{N}(P)$ because the along part is always given by $\mathscr{N}(P)$.

Example. There do exist distinct projections $P, Q \in \mathscr{L}(V)$ with $\mathscr{R}(P)=\mathscr{R}(Q)$ and $\mathscr{N}(P) \neq \mathscr{N}(Q)$.
For example, the projections $P, Q \in \mathscr{L}\left(\mathbb{C}^{2}\right)$ defined by

$$
P\left(e_{1}\right)=e_{1}, P\left(e_{2}\right)=0, Q\left(e_{1}\right)=e_{1}, Q\left(e_{1}+e_{2}\right)=0,
$$

has the same range but different kernels.

Remark. In a finite dimensional inner product space $(V,\langle\cdot, \cdot\rangle)$, the projection $P$ onto $W_{1}$ along $W_{2}$ is an orthogonal projection only when

$$
W_{2}=W_{1}^{\perp} .
$$

In an infinite dimensional inner product space $(V,\langle\cdot, \cdot\rangle)$, a projection $P$ onto $W_{1}$ along $W_{2}$ is an orthogonal projection only when

- $W_{1}$ is a closed subspace, and
- $W_{2}=W_{1}^{\perp}$.

Note. Sometimes nonorthogonal projections are called oblique projections.

What questions do you have?

Example (in lieu of 12.1.7). Consider the vector space $V=C([0,1], \mathbb{C})$ equipped with the inner product

$$
\langle f, g\rangle=\int_{0}^{1} \overline{f(t)} g(t) d t
$$

Define the operator $P: V \rightarrow V$ by $P(f)$ is the constant function from $[0,1]$ to $\mathbb{C}$ with value $f(0)$.

The operator $P$ is linear because for $f, g \in V$ and $a, b \in \mathbb{C}$ there holds

$$
\longrightarrow P(a f+b g)=a f(0)+b g(0)=a P(f)+b P(g) .
$$

The operator $P \in \mathscr{L}(V)$ is a projection because for all $f \in V$ there holds

$$
P^{2}(f)=P(f(0))=f(0)=P(f) .
$$

The subspace $\mathscr{R}(P)$ consists of the constant functions from $[0,1]$ to $\mathbb{C}$.

The subspace $\mathscr{N}(P)$ consists of those continuous functions $f:[0,1] \rightarrow \mathbb{C}$ such that $f(0)=0$.

By Theorem 12.1.4 there holds $V=\mathscr{R}(P) \oplus \mathscr{N}(P)$, i.e., each function $f \in V$ can be written uniquely as

$$
\longrightarrow f(t)=f(0)+(f(t)-f(0))
$$

for $f(0) \in \mathscr{R}(P)$ and $f(t)-f(0) \in \mathscr{N}(P)$.
With $W_{1}=\mathscr{R}(P)$ and $W_{2}=\mathscr{N}(P)$, we have by Theorem 12.1.6 that $P$ is the unique projection onto $W_{1}$ along $W_{2}$.

Is $P$ an orthogonal projection?
The answer is no because there exists $f \in W_{1}$ and $g \in W_{2}$ such that $\langle f, g\rangle \neq 0$, i.e., for $f=1$ and $g(t)=t$ we have

$$
\longrightarrow\langle f, g\rangle=\int_{0}^{1} t d t=1 / 2 \neq 0
$$

Recall from Section 4.2 that a subspace $W$ of $V$ is invariant for $L \in \mathscr{L}(V)$ or that $W$ is $L$-invariant if

$$
L(W) \subset W
$$

Theorem 12.1.8. For $L \in \mathscr{L}(V)$, a subspace $W$ of $V$ is $L$-invariant if and only if for any projection $P \in \mathscr{L}(V)$ onto $W$ there holds

$$
L P=P L P \text {. almost commuting }
$$

Theorem 12.1.9. Suppose $W_{1}, W_{2}$ are subspaces of $V$ for which
$\rightarrow V=W_{1} \oplus W_{2}$, and $L \in \mathscr{L}(V)$. Then $W_{1}$ and $W_{2}$ are both $L$-invariant if and only if the projection $P$ onto $W_{1}$ along $W_{2}$ satisfies

$$
L P=P L .
$$

Examples. (i) An invariant space for $L=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$ is
$\mapsto W=\operatorname{span}\left(e_{1}\right)$ and $P=\left[\begin{array}{cc}1 & -1 \\ 0 & 0\end{array}\right]$ is a projection onto $W$ because

$$
\longrightarrow P^{2}=\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]=P
$$

and $\mathscr{R}(P)=\operatorname{span}\left(e_{1}\right)=W$. We verify Theorem 12.1.8:

$$
\begin{aligned}
& \longrightarrow L P=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right] \\
& \longrightarrow P L=\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right] \neq L P
\end{aligned}
$$

but

$$
P L P=\left[\begin{array}{ll}
2 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & -1 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
2 & -2 \\
0 & 0
\end{array}\right]=\underline{L P}
$$

(ii) Complementary invariant subspaces for $L=\left[\begin{array}{cc}2 & 0 \\ 0 & -1\end{array}\right]$ are

$$
W_{1}=\operatorname{span}\left(e_{1}\right) \text { and } W_{2}=\operatorname{span}\left(e_{2}\right) . \quad \mathbb{C}^{2}=W_{\mathbb{1}} \oplus \boldsymbol{W}_{2}
$$

The linear operator $P=\left[\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right]$ is the projection onto $W_{1}$ along $W_{2}$ because

$$
\longrightarrow P^{2}=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=P
$$

and $\mathscr{R}(P)=\operatorname{span}\left(e_{1}\right)=W_{1}$ and $\mathscr{N}(P)=\operatorname{span}\left(e_{2}\right)=W_{2}$. We verify Theorem 12.1.9:
and

$$
\begin{gathered}
L P=\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]=\frac{\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]}{\underline{\text { I }}} \\
P L=\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
2 & 0 \\
0 & 0
\end{array}\right]=L P .
\end{gathered}
$$

What questions do you have?

First Reading Quiz Question: What are the properties of the rank-1 eigenprojections $P_{i}$ of a simple finite dimensional linear operator $A$ ?

Recall for $i, j=1, \ldots, n$ that $\delta_{i j}$ is the $(i, j)^{\text {th }}$ entry of the $n \times n$ identity matrix 1 .

Proposition 12.1.10. Suppose $A \in M_{n}(\mathbb{C})$ is a simple operator whose distinct (complex) eigenvalues are $\lambda_{1}, \ldots, \lambda_{n}$. Let
$\rightarrow S \in M_{n}(\mathbb{C})$ be the matrix whose columns are the corresponding $\rightarrow$ right eigenvectors of $A$, and denote the $i^{\text {th }}$ column of $S$ by $\mathrm{r}_{i}$. Let
$\rightarrow \ell_{1}^{\mathrm{T}}, \ldots, \ell_{n}^{\mathrm{T}}$ be the corresponding left eigenvectors of $A$, i.e., the
$\rightarrow$ rows of $S^{-1}$. Define the $n \times n$ matrices $P_{k}=\mathrm{r}_{k} \ell_{k}^{\mathrm{T}}, k=1, \ldots, n$.

## Then

$\longrightarrow$ (i) $\ell_{i}^{\mathrm{T}} \mathrm{r}_{j}=\delta_{i j}$ for all $i, j=1, \ldots, n$,
$\longrightarrow$ (ii) $P_{i} P_{j}=\delta_{i j} P_{i}$ for all $i, j=1, \ldots, n$,

$\rightarrow$ (iii) $P_{i} A=A P_{i}=\lambda_{i} P_{i}$ for all $i=1, \ldots, n$,
$\rightarrow$ (iv) $\sum_{i=1}^{n} P_{i}=I$, and
$\rightarrow$ (v) $A=\sum_{i=1}^{n} \lambda_{i} P_{i} \quad$ (Spectral Decomposition).

Remark. The matrices $P_{i}$ are projections by part (ii) of Proposition 12.1.10 because

$$
P_{i}^{2}=P_{i} P_{i}=\delta_{i i} P_{i}=P_{i}
$$

The rank of each of these projections is one because the columns of $P_{i}$ are all scalar multiples of the nonzero right eigenvector $r_{i}$. Indeed the range of $P$ is the one-dimensional eigenspace of $A$ corresponding to the eigenvalue $\lambda_{i}$.

Definition. For a simple operator $A \in M_{n}(\mathbb{C})$ the rank-1 projections $P_{1}, \ldots, P_{n}$ in Proposition 12.1.10 are called the eigenprojections of $A$.

Example (in lieu of 12.1.11). The eigenvalues and right eigenvectors of the simple

$$
A=\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \in M_{2}(\mathbb{C})
$$

are

$$
\longrightarrow \lambda_{1}=3, \mathrm{r}_{1}=\left[\begin{array}{l}
1 \\
2
\end{array}\right], \lambda_{2}=-1, \mathrm{r}_{2}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] .
$$

The matrix of right eigenvectors

$$
S=\left[\begin{array}{ll}
\mathrm{r}_{1} & \mathrm{r}_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]
$$

has inverse

$$
S^{-1}=-\frac{1}{4}\left[\begin{array}{cc}
-2 & -1 \\
-2 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & 1 \\
2 & -1
\end{array}\right]
$$

The rows of $S^{-1}$ give left eigenvectors of $A$ :

$$
\longrightarrow \ell_{1}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{ll}
2 & 1
\end{array}\right], \ell_{2}^{\mathrm{T}}=\frac{1}{4}\left[\begin{array}{ll}
2 & -1
\end{array}\right] .
$$

The eigenprojections are
and

$$
\longrightarrow \quad P_{1}=r_{1} \ell_{1}^{T}=\frac{1}{4}\left[\begin{array}{l}
1 \\
2
\end{array}\right]\left[\begin{array}{ll}
2 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right] \Leftarrow
$$

$$
\longrightarrow P_{2}=r_{2} \ell_{2}^{T}=\frac{1}{4}\left[\begin{array}{c}
1 \\
-2
\end{array}\right]\left[\begin{array}{ll}
2 & -1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right] .
$$

Each of $P_{1}$ and $P_{2}$ has rank 1, and we can verify properties (ii)-(v) listed in Proposition 12.1.10.

For property (ii) we have
$\rightarrow P_{1} P_{2}=\frac{1}{16}\left[\begin{array}{ll}2 & 1 \\ 4 & 2\end{array}\right]\left[\begin{array}{cc}2 & -1 \\ -4 & 2\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]=0$,

$$
\begin{aligned}
P_{1}^{2} & =\frac{1}{16}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\frac{1}{16}\left[\begin{array}{cc}
8 & 4 \\
16 & 8
\end{array}\right]=\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=P_{1}, \\
P_{2}^{2} & =\frac{1}{16}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\frac{1}{16}\left[\begin{array}{cc}
8 & -4 \\
-16 & 8
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right] \\
& =P_{2} .
\end{aligned}
$$

For property (iii) we have

$$
\left\{\begin{aligned}
A P_{1} & \left.=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
6 & 3 \\
12 & 6
\end{array}\right], ¢\right) \\
P_{1} A & =\frac{1}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
6 & 3 \\
12 & 6
\end{array}\right]=A P_{1}=\frac{3}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]=\lambda_{1} P_{1} \\
A P_{2} & \left.\left.=\frac{1}{4}\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right]\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right],\right\rangle\right) \\
P_{2} A & =\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\left[\begin{array}{cc}
1 & 1 \\
4 & 1
\end{array}\right]=\frac{1}{4}\left[\begin{array}{cc}
-2 & 1 \\
4 & -2
\end{array}\right] \\
& \xlongequal{=} A P_{2}=-\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]=\lambda_{2} P_{2} .
\end{aligned}\right.
$$

For property (iv) we have

$$
\begin{aligned}
\longrightarrow P_{1}+P_{2} & =\frac{1}{4}\left\{\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]+\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right]\right\} \\
& =\frac{1}{4}\left[\begin{array}{ll}
4 & 0 \\
0 & 4
\end{array}\right] \\
& =I
\end{aligned}
$$

Finally for property (v), the spectral decomposition, we have

$$
\begin{aligned}
\lambda_{1} P_{1}+\lambda_{2} P_{2} & =\frac{3}{4}\left[\begin{array}{ll}
2 & 1 \\
4 & 2
\end{array}\right]-\frac{1}{4}\left[\begin{array}{cc}
2 & -1 \\
-4 & 2
\end{array}\right] \\
& =\left[\begin{array}{ll}
1 & 1 \\
4 & 1
\end{array}\right] \\
& =A .
\end{aligned}
$$

What questions do you have?

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

