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We saw last time in Section 12.1 that a simple linear operator
A 2 Mn(C) has the spectral decomposition

A =
nX

i=1

�iPi

where �1, . . . ,�n are the distinct eigenvalues of A and Pi 2 L (Cn)
is the eigenprojection onto the eigenspace

N (�i I � A) = R(Pi ).

Something similar holds for semisimple A.

When A is not semisimple, there are not enough eigenvectors to
form an eigenbasis; we must look for generalized eigenspaces that
contains the eigenspaces in order to find something like the
spectral decomposition of A.
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Throughout we assume that V is a finite dimensional vector space
over F, which we know means that V is isomorphic to Fn for
n = dim(V ).

When we speak of a linear operator A on V we will mean a linear
operator on Fn, i.e., A 2 Mn(F).

Recall from Exercise 2.8 that for a linear operator B on any vector
space (this includes infinite dimensional) we have the increasing
sequence or ascending chain of subspaces

N (B) ⇢ N (B2) ⇢ · · · ⇢ N (Bk) ⇢ · · · .

When V is finite dimensional, the ascending chain stabilizes, i.e.,
there exists K 2 N such that for all k � K there holds
N (Bk) = N (Bk+1), because the the nondecreasing sequence of
dimensions (dim(N (B l)))1l=0 is bounded above by dim(V ) (proof
of this upper bound is HW Exercise 12.6), where we understand
B0 = I .



Definition 12.2.1. The index of B 2 Mn(F), denoted by ind(B), is
the smallest k 2 {0, 1, 2, 3, . . . } such that

N (Bk) = N (Bk+1).

Example 12.2.2. If B 2 Mn(F) is invertible, i.e., det(B) 6= 0, then
N (B l) = {0} for all l = 0, 1, 2, 3, . . . .

Thus for invertible B we have ind(B) = 0. To get a positive index
requires that B is not invertible.

Theorem 12.2.3. If ind(B) = k , then for all l � k there holds

N (B l) = N (B l+1),

and each of the inclusions

N (B l) ⇢ N (B l+1)

is proper for all l = 0, . . . , k � 1.



Proof. The finite dimensionality of Fn implies that only finite many
of the inclusions in the ascending chain

N (B) ⇢ N (B2) ⇢ · · · ⇢ N (Bk) ⇢ · · ·

can be proper.

You showed in Exercise 2.12, that if N (B l) = N (B l+1) for some
l = 0, 1, 2, 3, . . . , then N (B j) = N (B j+1) for all j � l .

Thus with k = ind(B) being the smallest value for which
N (Bk) = N (Bk+1), we obtain for all l � k that

N (B l) = N (B l+1),

and for all l = 0, . . . , k � 1 that the inclusions

N (B l) ⇢ N (B l+1)

are proper. ⇤



What questions do you have?



Example (in lieu of 12.2.4). For the matrix

B =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

we have

N (B) = span{e2} and R(B) = span{e1, e2, e3}.

Since

B2 =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775 =

2

664

9 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

3

775

we have

N (B2) = span{e2, e3} and R(B2) = span{e1, e2}.
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Since

B3 =

2

664

9 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

3

775

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775 =

2

664

27 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775

we have

N (B3) = span{e2, e3, e4} and R(B3) = {e1}.

Since for all l � 3 we have

B l =

2

664

3l 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

3

775 ,

for l � 3 we have

N (B l) = span{e2, e3, e4} and R(B l) = span{e1}.

This gives ind(B) = 3.



Summarizing, for

B =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

we have

N (B) = span{e2} and R(B) = span{e1, e2, e3},

N (B2) = span{e2, e3} and R(B2) = span{e1, e2},

and for l � 3,

N (B l) = span{e2, e3, e4} and R(B l) = span{e1}.

Notice also that N (B l) and R(B l) intersect nontrivially when
l = 1, 2, but that these subspaces intersect trivially when l � 3.

This is not a coincidence.



What questions do you have?



Theorem 12.2.5. For B 2 Mn(C), if k � ind(B), then

Cn = R(Bk)� N (Bk).

We present an important observation in the finite dimensional case
about the vectors obtained by repeated powers of a linear operator
acting on a given vector.

Proposition 12.2.7. For B 2 Mn(C) and x 2 Cn, if there exists
m 2 N such that Bmx = 0 and Bm�1x 6= 0, then the set

{x,Bx, . . . ,Bm�1x}

is linearly independent.

We illustrate Proposition 12.2.7 with the matrix the 4⇥ 4 we saw
before.



Example. For the matrix

B =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

and the vector x = e4 we have

Bx =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775

2

664

0
0
0
1

3

775 =

2

664

0
0
1
0

3

775 = e3,

B2x = Be3 =

2

664

3 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

3

775 e3 =

2

664

0
1
0
0

3

775 e2,

and B3x = Be2 = 0; the vectors {x,Bx,B2x} = {e4, e3, e2} are
linearly independent.



Recall that the eigenspace of a linear operator A 2 Mn(C)
associated to one of its eigenvalues � is the subspace

⌃� = N (�I � A),

where the dimension of this subspace is the geometric multiplicity
of �.

If A 2 Mn(C) is semisimple (which includes the simple case) with
spectrum �(A) = {�1, . . . ,�r} (the distinct eigenvalues of A), then
there holds

Cn = N (�1I � A)� N (�2I � A)� · · ·� N (�r I � A),

where the geometric multiplicity of each eigenspace equals the
algebraic multiplicity of the corresponding eigenvalue.

Using the union of the bases for the eigenspaces of a semisimple
operator A results in a diagonal matrix where the diagonal entries
are the eigenvalues of A appearing according to their multiplicity.

So

I



When A is not diagonalizable, we do not have an eigenbasis for Cn.

But for each eigenvalue � 2 �(A) the ascending chain

N (�I � A) ⇢ N ((�I � A)2) ⇢ · · · ⇢ N ((�I � A)l) ⇢ · · ·

for the noninvertible linear operator �I � A stabilizes when

l = ind(�I � A).

We will show that the subspaces

N ((�I � A)ind(�I�A)), � 2 �(A),

do give a direct sum decomposition of Fn and the linear operator
in the corresponding basis is a block diagonal matrix.



Definition 12.2.8. For A 2 Mn(C) and � 2 �(A), the subspace

E� = N ((�I � A)ind(�I�A))

is called the generalized eigenspace of A corresponding to �.

Every nonzero vector in E� is called a generalized eigenvector of A
corresponding to �.

Through the next four lemmas we develop the theory needed to
prove that the generalized eigenspaces of a linear operator on a
finite dimensional vector space do indeed give a direct sum
decomposition of the the vector space.

Lemma 12.2.9. For A 2 Mn(C) and � 2 �(A), the generalized
eigenspace E� is A-invariant.
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What questions do you have?
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Example (in lieu of 12.2.10). The matrix

A =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775

has two distinct eigenvalues

• �1 = 2 of algebraic multiplicity 3 and

• �2 = 5 of algebraic multiplicity 1.

Since

�1I � A =

2

664

0 �1 0 0
0 0 �1 0
0 0 0 �3
0 0 0 �3

3

775 ,

there we have N (�1I � A) = span(e1).

j
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Since

(�1I�A)2 =

2

664

0 �1 0 0
0 0 �1 0
0 0 0 �3
0 0 0 �3

3

775

2

664

0 �1 0 0
0 0 �1 0
0 0 0 �3
0 0 0 �3

3

775 =

2

664

0 0 1 0
0 0 0 3
0 0 0 9
0 0 0 9

3

775 ,

we have
N ((�1I � A)2) = span(e1, e2).

Since

(�1I�A)3 =

2

664

0 0 1 0
0 0 0 3
0 0 0 9
0 0 0 9

3

775

2

664

0 �1 0 0
0 0 �1 0
0 0 0 �3
0 0 0 1

3

775 =

2

664

0 0 0 �3
0 0 0 �9
0 0 0 �27
0 0 0 �27

3

775 ,

we have
N ((�1I � A)3) = span(e1, e2, e3).
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Since

(�1I�A)4 =

2

664

0 0 0 �3
0 0 0 �9
0 0 0 �27
0 0 0 �27

3

775

2

664

0 �1 0 0
0 0 �1 0
0 0 0 �3
0 0 0 �3

3

775 =

2

664

0 0 0 �9
0 0 0 �27
0 0 0 �81
0 0 0 �81

3

775 .

we have
N ((�1I � A)4) = span(e1, e2, e3).

Thus
ind(�1I � A) = 3,

and the generalized eigenspace E�1 of A corresponding to �1 is
N ((�1I � A)3 and has a basis of {e1, e2, e3}.

Is it a coincidence that ind(�1I � A) is equal to the algebraic
multiplicity of �1?

Is it a coincidence that dim(E�1) is equal to the algebraic
multiplicity of �1?
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Since

�2I � A =

2

664

3 �1 0 0
0 3 �1 0
0 0 3 �3
0 0 0 0

3

775 ,

the (generalized) eigenspace E�2 has a basis of

2

664

1
3
9
9

3

775 .

Recall that E�1 = span(e1, e2, e3).

Is it a coincidence that E�1 \ E�2 = {0}?
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Example. It is a coincidence when the index equals the algebraic
multiplicity as shown here.

For the eigenvalue �1 = 2 with algebraic multiplicity 3 of the
matrix

A =

2

664

2 0 1 0
0 2 0 0
0 0 2 0
0 0 0 9

3

775

we have

(�1I � A)2 =

2

664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 9

3

775 , (�1I � A)3 =

2

664

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 �27

3

775 ,

so that N ((�1I � A)2) = N ((�1I � A)3), implying

ind(�1I � A) = 2 6= 3.



What questions do you have?



Lemma 12.2.11. If � and µ are distinct eigenvalues of
A 2 Mn(C), then

E� \ Eµ = {0}.

[Not a coincidence that generalized eigenspaces for distinct
eigenvalues intersect trivially.]

Lemma 12.2.12. For A 2 Mn(C), suppose W1 and W2 are
A-invariant subspaces of Cn with

W1 \W2 = {0}.

If, for � 2 �(A), the generalized eigenspace E� satisfies
E� \Wi = {0} for all i = 1, 2, then

E� \ (W1 �W2) = {0}.

Lemma 12.2.13. For A 2 Mn(C) and � 2 �(A), the dimension of
the generalized eigenspace E� equals the algebraic multiplicity m�

of �.

[Not a coincidence that dim(E�) = m�.]



Theorem 12.2.14. For each A 2 Mn(C) there is decomposition of
Cn into a direct sum of A-invariant subspaces

Cn =
M

�2�(A)

E�.

Remark 12.2.15. Theorem 12.2.14 implies that every A 2 Mn(C)
is similar to a block diagonal matrix where each block is the
representation of A on the A-invariant E�.

There exists a basis for each block in which the block matrix is
upper triangular with the eigenvalue in each diagonal entry and
either zeros or ones on the super diagonal.

With each block put into this form, we obtain what is known as
the Jordan Canonical Form of A.

Although useful in theory, the Jordan Canonical Form is poorly
conditioned, meaning small errors in the floating-point arithmetic
can compound into large errors in the final result.7



Example (Continued). Recall that the generalized eigenspaces for
the matrix

A =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775

with spectrum �(A) = {�1 = 2,�2 = 5} are

E�1 = N (�1I � A) = span(e1, e2, e3)

and

E�2 = N (�2I � A) = span

0

BB@

2

664

1
3
9
9

3

775

1

CCA .

By Theorem 12.2.14 we have

C4 = E�1 � E�2 .

I
I
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Using the bases {e1, e2, e3} for E�1 and {v4} = (1, 3, 9, 9)T for E�2

the linear operator A has a block diagonal form which is obtained
by using the transition matrix CST for S = {e1, e2, e3, e4}, and
T = {e1, e2, e3, v4}, i.e.,

CST =

2

664

1 0 0 1
0 1 0 3
0 0 1 9
0 0 0 9

3

775 , [x ]S = CST [x ]T .

The block diagonal matrix similar to A is

C�1
STACST =

2

664

2 1 0 0
0 2 1 0
0 0 2 0
0 0 0 5

3

775 .

[This is the Jordan Canonical Form for A; you are NOT responsible
for obtaining this.]
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What questions do you have?


