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Recall for a linear operator A 2 Mn(C) its resolvent
RA : ⇢(A) ! Mn(A) is defined by

RA(z) = (zI � A)�1, z 2 ⇢(A) = C \ �(A).

Definition 12.4.1. For A 2 Mn(C), let � 2 �(A) and � be a
positively oriented simple closed curve enclosing � but no other
elements of �(A). The spectral projection or eigenprojection of A
associated with � is defined to be

P� = Res(RA(z),�) =
1

2⇡i

‰
�
RA(z) dz .

[Draw the picture.]
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First Reading Quiz Question: What properties does the spectral
projection have?

Theorem 12.4.2. For A 2 Mn(C), the spectral projections P�,
� 2 �(A), have the following properties.

(i) Idempotency: P2
� = P� for all � 2 �(A).

(ii) Independence: P�P�0 = 0 = P�0P� for all �,�0 2 �(A) with
� 6= �0.

(iii) A-invariance: AP� = P�A for all � 2 �(A) (“commutes”),

(iv) Completeness:
X

�2�(A)

P� = I .

Note. Property (iii) AP� = P�A implies the A-invariance of
R(P�).

Proof. For v 2 R(P�) there exists x 2 Cn such that v = P�x.

Then P�(Av) = AP�v = AP�P�x = AP�x = Av.

By Lemma 12.1.3, Av belongs to R(P�), i.e., R(P�) is
A-invariant.
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What questions do you have?



Example (in lieu of 12.4.4). Find the spectral projections for

A =


1 1
4 1

�
.

Recall that the resolvent for this matrix is

RA(z) =
1

(z � 3)(z + 1)


z � 1 1
4 z � 1

�
.

The partial fraction decompositions for the entries of RA(z) are

z � 1

(z � 3)(z + 1)
=

1/2

z � 3
+

1/2

z + 1
,

1

(z � 3)(z + 1)
=

1/4

z � 3
+

�1/4

z + 1
,

4

(z � 3)(z + 1)
=

1

z � 3
+

�1

z + 1
.
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We obtain the partial fraction decomposition

RA(z) =
1

z � 3


1/2 1/4
1 1/2

�
+

1

z + 1


1/2 �1/4
�1 1/2

�
.

Recall that we can express 1/(z � 3) as a geometric series in
(z + 1), and we can express 1/(z + 1) as a geometric series in
(z � 3), giving the Laurent series of RA(z) about z = 3 and about
about z = �1.

From the partial fraction decomposition of RA(z) we have the
spectral projections,

P3 = Res(RA(z), 3) =


1/2 1/4
1 1/2

�
=

1

4


2 1
4 2

�
,

and

P�1 = Res(RA(z),�1) =


1/2 �1/4
�1 1/2

�
=

1

4


2 �1
�4 2

�
.
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These spectral projections P3 and P�1 are precisely the projections

P1 = r1`
T
1 =

1

4


2 1
4 2

�
, P2 = r2`

T
2 =

1

4


2 �1
�4 2

�

(slight abuse of subscript notation for projections) we computed in
Lecture #31 by way of right eigenvectors

r1 =


1
2

�
, r2 =


1
�2

�

of A, and the left eigenvectors

`T1 =
1

4

⇥
2 1

⇤
, `T2 =

1

4
=

⇥
2 �1

⇤

of A that satisfy `Ti rj = �ij .

We already have seen that these projections are idempotent,
independent, commute with A, and sum to I .



What questions do you have?



Example. Find the spectral projections for

A =

2

4
6 1 0
0 6 7
0 0 4

3

5 .

Recall from Lecture #33 that the resolvent for this matrix is

RA(z) =

2

4
(z � 6)�1 (z � 6)�2 7(z � 6)�2(z � 4)�1

0 (z � 6)�1 7(z � 6)�1(z � 4)�1

0 0 (z � 4)�1

3

5 .

The needed partial fraction decompositions are

7

(z � 6)2(z � 4)
=

�7/4

z � 6
+

7/2

(z � 6)2
+

7/4

(z � 4)
,

7

(z � 6)(z � 4)
=

7/2

z � 6
+

�7/2

z � 4
.
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The partial fraction decomposition for RA(z) is

1

z � 6

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5+ 1

(z � 6)2

2

4
0 1 7/2
0 0 0
0 0 0

3

5+ 1

z � 4

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 .

From this we obtain

P6 = Res(RA(z), 6) =

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5 ,

and

P4 = Res(RA(z), 4) =

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 .

We check the four properties of Theorem 12.4.2 for P6 and P4.
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The matrices P6 and P4 are idempotent:

P2
6 =

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5 =

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5 = P6,

and

P2
4 =

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 =

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 = P4.

The matrices P6 and P4 are independent:

P6P4 =

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 = 0,

and

P4P6 =

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5 = 0.



The matrices P6 and P4 commute with A:

P6A =

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5

2

4
6 1 0
0 6 7
0 0 4

3

5 =

2

4
6 1 �7
0 6 21
0 0 0

3

5 ,

AP6 =

2

4
6 1 0
0 6 7
0 0 4

3

5

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5 =

2

4
6 1 �7
0 6 21
0 0 0

3

5 ,

and

P4A =

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5

2

4
6 1 0
0 6 7
0 0 4

3

5 =

2

4
0 0 7
0 0 �14
0 0 4

3

5 ,

AP4 =

2

4
6 1 0
0 6 7
0 0 4

3

5

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 =

2

4
0 0 7
0 0 �14
0 0 4

3

5 .
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The matrices P6 and P4 are complete:

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5+

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 = I .

Does 6P6 + 4P4 = A equal? No because

6P6 + 4P4 =

2

4
6 0 �7/2
0 6 7
0 0 4

3

5 6= A =

2

4
6 1 0
0 6 7
0 0 4

3

5 .

This should not be surprising since A is not diagonalizable.

But notice that

A� 6P6 � 4P4 =

2

4
0 1 7/2
0 0 0
0 0 0

3

5 .

Have we seen this matrix before?
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Yes, we saw this matrix,

A� 6P6 � 4P4 =

2

4
0 1 7/2
0 0 0
0 0 0

3

5

in the resolvent RA(z),

1

z � 6

2

4
1 0 �7/4
0 1 7/2
0 0 0

3

5+ 1

(z � 6)2

2

4
0 1 7/2
0 0 0
0 0 0

3

5+ 1

z � 4

2

4
0 0 7/4
0 0 �7/2
0 0 1

3

5 ,

as the coe�cient matrix of the (z � 6)�2 term.

Is this just a coincidence? We shall see.
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What questions do you have?



Example (in lieu of 12.4.5). Find the spectral projections for

A =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775 .

Recall that we computed the resolvent of this matrix in Lecture
#33, where we obtained

det(zI � A) = (z � 2)3(z � 5).

and adj(zI � A) is

2

664

(z � 2)2(z � 5) (z � 2)(z � 5) z � 5 3
0 (z � 2)2(z � 5) (z � 2)(z � 5) 3(z � 2)
0 0 (z � 2)2(z � 5) 3(z � 2)2

0 0 0 (z � 2)3

3

775 .



The resolvent RA(z) is

2

664

(z � 2)�1 (z � 2)�2 (z � 2)�3 3(z � 2)�3(z � 5)�1

0 (z � 2)�1 (z � 2)�2 3(z � 2)�2(z � 5)�1

0 0 (z � 2)�1 3(z � 2)�1(z � 5)�1

0 0 0 (z � 5)�1

3

775 .

The required partial fraction decompositions are

3

(z � 2)3(z � 5)
=

�1/9

z � 2
+

�1/3

(z � 2)2
+

�1

(z � 2)3
+

1/9

z � 5
,

3

(z � 2)2(z � 5)
=

�1/3

z � 2
+

�1

(z � 2)2
+

1/3

z � 5
,

3

(z � 2)(z � 5)
=

�1

z � 2
+

1

z � 5
.
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The partial fraction decomposition for the resolvent RA(z) is

1

z � 2

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775+
1

(z � 2)2

2

664

0 1 0 �1/3
0 0 1 �1
0 0 0 0
0 0 0 0

3

775

+
1

(z � 2)3

2

664

0 0 0 �1
0 0 0 0
0 0 0 0
0 0 0 0

3

775

+
1

z � 5

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 .
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From the partial fraction decomposition of the resolvent we obtain
the spectral decompositions

P2 = Res(RA(z), 2) =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775

and

P5 = Res(RA(z), 5) =

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 .

We verify the four properties of Theorem 12.4.2 for the matrices
P2 and P5.



The matrices P2 and P5 are idempotent:

P2
2 =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775 =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775 = P2,

and

P2
5 =

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 =

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 = P5.



The matrices P2 and P5 are independent:

P2P5 =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 = 0

and

P5P2 =

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775 = 0.



The matrices P2 and P5 commute with A:

AP2 =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775 =

2

664

2 1 0 �5/9
0 2 1 �5/3
0 0 2 �2
0 0 0 0

3

775 ,

P2A =

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775 =

2

664

2 1 0 �5/9
0 2 1 �5/3
0 0 2 �2
0 0 0 0

3

775 ,

11



and

AP5 =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 =

2

664

0 0 0 5/9
0 0 0 5/3
0 0 0 5
0 0 0 5

3

775 ,

P5A =

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775 =

2

664

0 0 0 5/9
0 0 0 5/3
0 0 0 5
0 0 0 5

3

775 .

11



The matrices P2 and P5 are complete:

2

664

1 0 0 �1/9
0 1 0 �1/3
0 0 1 �1
0 0 0 0

3

775+

2

664

0 0 0 1/9
0 0 0 1/3
0 0 0 1
0 0 0 1

3

775 = I .

Since A is not diagonalizable,

2P2 + 5P5 6= A =

2

664

2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5

3

775 .

Something else is needed that comes from the resolvent RA(z),
something that will be fully explored in the next two sections.

For now we learn a few other things in preparation.
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What questions do you have?



Theorem 12.4.6 (Spectral Resolution Theorem). For
A 2 Mn(C), if the power series

f (z) =
1X

k=0

akz
k

has a radius of convergence b > r(A), then for any positively
oriented simple closed contour � containing �(A) and contained
within the disk B(0, b0) for some b0 2 (r(A), b), there holds

1X

k=0

akA
k = f (A) =

1

2⇡i

‰
�
f (z)RA(z) dz .

[Draw the picture]
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Proof. WLOG we can assume that � is the circle centered at 0
with radius b0. Using the Laurent series for RA(z) on |z | > r(A),
we have

1

2⇡i

‰
�
f (z)RA(z) dz =

1

2⇡i

‰
�

f (z)

z

1X

k=0

Ak

zk
dz .

Since f (z)/z is bounded on � and the summation converges
uniformly on compact sets, the sum and integral can be
interchanged to give

1

2⇡i

‰
�
f (z)RA(z) dz =

1X

k=0

Ak


1

2⇡i

‰
�

f (z)

zk+1
dz

�
.

By Cauchy’s Di↵erentiation formula we have

ak =
f (k)(0)

k!
=

1

2⇡i

‰
�

f (z)

zk+1
dz .

Thus we obtain

1

2⇡i

‰
�
f (z)RA(z) dz =

1X

k=0

akA
k = f (A).

s



Second Reading Quiz Question: The spectral radius r(A) is the
supremum of the absolute values of the eigenvalues of A.

True

Corollary 12.4.7. The spectral radius of A 2 Mn(C) satisfies

r(A) = sup{|�| : � 2 �(A)}.

Note. For a polynomial q(z) = a0+ a1z + a2z2+ · · ·+ anzn 2 C[z ]
and A 2 Mn(C), recall that

q(A) = a0I + a1A+ a2A
2 + · · ·+ anA

n.

Corollary 12.4.8 (Cayley-Hamilton Theorem). For A 2 Mn(C),
let p(z) = det(zI � A), the characteristic polynomial of A. Then
p(A) = 0.

Nota Bene 12.4.9. What this poorly worded remark wanted to
say is that no polynomial in A is formed if we replace z by A on
the right side of p(z) = det(zI � A) and then compute the
determinant.

a
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Example (in lieu of 12.4.10). We verify the Cayley-Hamilton
Theorem for

A =


1 1
4 1

�
.

The characteristic polynomial of A is

p(z) = (z � 3)(z + 1) = z2 � 2z � 3.

Replacing z by A in the characteristic polynomial we have

A2 � 2A� 3I =


1 1
4 1

� 
1 1
4 1

�
� 2


1 1
4 1

�
� 3


1 0
0 1

�

=


5 2
8 5

�
�

2 2
8 2

�
�

3 0
0 3

�

=


0 0
0 0

�
.

oh 3 I



What questions do you have?
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