12.4 Spectral Resolution

April 3, 2020



Recall for a linear operator A € M,(C) its resolvent
Ra : p(A) — M,(A) is defined by

> Ra(z)=(zl =AY, z€ p(A) =C\ o(A).

Definition 12.4.1. For A € M,(C), let A € 0(A) and T be a
positively oriented simple closed curve enclosing A but no other
elements of o(A). The spectral projection or eigenprojection of A
associated with A is defined to be

— h= IES(RA(Z),j\) = %%RA(Z) dz.
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First Reading Quiz Question: What properties does the spectral
projection have?

Theorem 12.4.2. For A € M,(C), the spectral projections P},
A € g(A), have the following properties.
(i) Idempotency: P2 = P, for all XA € o(A).
(ii) Independence: PyPy =0 = Py Py for all A\, N € o(A) with
A# N — —

(iii) A-invariance: APy = P)A for all A € o(A) (“commutes”),

(iv) Completeness: Z Py = 1.

Aeo(A)
9 Note. Property (iii) APy = P)A implies the A-invariance of
K (P>). ’_
Proof. For v € Z(P)) there exists x € C" such that v = Pyx.
Then Py (Av) = APA\:/Z\E\}PV,& - A}Z/Z/)\?z.

By Lemma 12.1.3, Av belongs to Z(Py), i.e., Z(P)) is
A-invariant.




What questions do you have?



Example (in lieu of 12.4.4). Find the spectral projections for

1 1
a=li 1|

Recall that the resolvent for this matrix is Z

1 z—1 1
Ral2) = 37 D [ 4 z—lL

The partial fraction decompositions for the entries of Ra(z) are

(L0 @D z—1 A/>, 1/2

(z—=3)(z+1) z-3 =z+1’

a2 1 7D -1/s

(z—-3)(z+1) z—3+z—|—1’

4 D -1
2,0 (z—3)(z+1)_z—3+z+1'




We obtain the partial fraction decomposition

L L
1 [1/2 1/4 1 [1/2 —1/4
RA(Z)Z—?il 1/2]+z—|-1[—1 1/2 |
—7 N 7 ———
Recall that we can express 1/(z — 3) as a geometric series in
(z+ 1), and we can express 1/(z 4+ 1) as a geometric series in

(z — 3), giving the Laurent series of Ra(z) about z = 3 and about
about z = —1.

From the partial fraction decomposition of Ra(z) we have the
spectral projections,

oy - [1 3] -1

————

and

P-1 = Res(Ra(z), ~1) = [1_/12 —11//24] _ % [_24 —21] |

—




These spectral projections P3; and P_1 are precisely the projections

12 1 172 -1
ﬂ_“&_4L J’% 1265 4[4 2]

—

(slight abuse of subscript notation for projections) we computed in
Lecture #31 by way of right eigenvectors

n=f) ey

of A, and the left eigenvectors

ﬁ:%p HJE:%:p-4}

of A that satisfy E;Frj = jj.

—_—

We already have seen that these projections are idempotent,
independent, commute with A, and sum to /.



What questions do you have?



Example. Find the spectral projections for

A =

o O O
o o=
&~ N O

Recall from Lecture #33 that the resolvent for this matrix is

(z—6)"1 (z—6)2 (7(2 —6)"2(z—4)!
Ra(z) = 0 (z—6)"t\7(z—6)"1(z—4)"!
0 0 (z—4)71

The needed partial fraction decompositions are

7 7412 7/4
—> (z—6)2(z—4) z—6 + (z —6)? + (z—4)
7 72 —1)2

—2 (z—6)(z—4) _z—6+z—4'



The partial fraction decomposition for Ra(z) is

|20 —7/4 . [o1 70 0 0 7/4
0 1 7/2 0 0 O 0 0 —-7/2
—.——
From this we obtain
1 0 —7/4
Ps = Res(Ra(z),6) = |0 1 7/2 7@’
0 0 O
and
0 0 7/4
P, = Res(Ra(z),4) = |0 0 —7/2
0 0 1

We check the four properties of Theorem 12.4.2 for Pg and Pj.



The matrices Pg and P, are idempotent:

1 0 —7/4 (1 0 —-7/4 1 0 —7/4
PP=10 1 7/2||0 1 7/2|=101 7/2| =P,
T 0 0 0 0 0 0 0 0 0 —

e —e———— —_——
and

0 0 7/4 0 0 7/4 0 0 7/4
P;=10 0 —7/2| |0 0 —7/2| =0 0 —7/2| =Py
o 0 0 1 0 0 1 0 0 1 ”“

The matrices Pg and P, are independent:
1 0 -7/41 |0 0 7/4

PePy= |0 1 7/2 0 0 —7/2| =0,

”—” 0 0 0 0 0 1

and
0 0 7/4 1 0 —7/4
P,Ps =10 0 —-7/2| |0 1 7/2 | =0.

T 0 0 1 0O 0 O



The matrices Pg and P, commute with A:

M~ M~
| o | <
- O O — O O
_600_ _600_
I I
o~ < < _
/2
N~ O
- O O _7

T
7_ ~
O —=H O I O O
__|_ OO_ _600_
Il Il
O
<X Qs
Q. <L

and

—14

o oo
o oo
<+ O —_ —
=T
1
| o~ <
o o o — O O
o oo Voo
I |
4
< Q
Q <



The matrices Pg and P4 are complete:

1 0 —7/4 00 7/4
01 7/2|+|0 0 —7/2| =1
0 0

0 0 0 1
P, 0.
Does 6P6 + 4P4 = A equal7 No because
6 (0)~7/2 6 1 0
6P +4P, = |0 6 #A=10 6 7
0 0 4 0 0 4

This should not be surprising since A is not diagonalizable.

But notice that

A—6Pg — 4P, =

o O O
OO K=
O O ~—

Have we seen this matrix before?



Yes, we saw this matrix,

01 7/2
A—6Ps—4P,= {0 0 0
0O 0 O
in the resolvent Ra(z), %
1 1 0 —-7/4 0 1 7/2 1 0 0 7/4
01 7/2 |+ ~lo 0o o[+ 0 0 —7/2],
z=6 109 o | @=9]5g 0 ol 2740 0 1

as the coefficient matrix of the (z — 6)~2 term.

Is this just a coincidence? We shall see.

e




What questions do you have?



Example (in lieu of 12.4.5). Find the spectral projections for

O oo
oSO onNnp
oON = O
c1 W o o

Recall that we computed the resolvent of this matrix in Lecture
#33, where we obtained

det(zl — A) = (z — 2)*(z — 5).

and adj(zl — A) is

(z—2)*(z—5) (z—-2)(z—5) z—5 3
0 (z—2)%(z—-5) (z—2)(z—5) 3(z—2)
0 0 (z—2)%(z—-5) 3(z—2)?
i 0 0 0 (z—2)%




The resolvent Ra(z) is

The required partial fraction decompositions are

3 19 —1/3 119
(Z—2P(z—5) z-2 (z=272 " (z=27 "z—5

3 13 -1 13
(z—22(z—5) z-2 (z=22 " z—5

3 —1 1

(z—2)(z—5) :z—2+z—5'




The partial fraction decomposition for the resolvent Ra(z) is

1 00 —1/9 010 —1/3
1 fo10 13, 1 [001 -1
20001 -1 |TGZ=22l0 00 o

0 0 0 _ 000 0

— 0oo0 -11 —

1 oo o0 o
T Z=2%10 00 o
000 0]
0 0 0 1/9]

1 |00 o0 1/3

+z—50001
000 1|




From the partial fraction decomposition of the resolvent we obtain
the spectral decompositions

~1/9]
~1/3
—1
0

P2 — ReS(RA(Z),Q) —

o O O =
o O - O
o~ O O

and _

1/9

1/3
1

0 1

Ps = Res(Ra(z),5) =

o O O
o O O o
o O O o

We verify the four properties of Theorem 12.4.2 for the matrices
P> and Ps.



The matrices P> and Ps5 are idempotent:

2
2
and

000 1/9




The matrices P, and Ps are independent:

and




The matrices P, and P5; commute with A:

Y

o ™M S ™M

~ ~
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| |
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~— T~
1 _11_0
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NO OO —HOOoOo
I Il
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< Q.



and
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The matrices P, and Ps are complete:

1 %-1/9‘ 0 0 1/9
0 1 —1/3 n 0 0 1/3 _
001 -1 000 1]
0 0 0 0 0 0 0 1 |
73 Cs
Since A is not diagonalizable,
2 (>0 0]
0 2(@Do
2P, +5P5 £ A = 00 2 3
0 0 0 5]

Something else is needed that comes from the resolvent Ra(z),
something that will be fully explored in the next two sections.

For now we learn a few other things in preparation.



What questions do you have?



Theorem 12.4.6 (Spectral Resolution Theorem). For
A € M,(C), if the power series

0.}
= E aka
k=0

has a radius of convergence b > r(A), then for any positively
oriented simple closed contour I' containing o(A) and contained
within the disk B(0, bg) for some by € (r(A), b), there holds

L 4 (TAD
ZakAk — .f_ﬂ‘;. 271” yéf(z)RA(z) dz.

— e
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[Draw the pictu re]
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Proof. WLOG we can assume that I is the circle centered at 0
with radius by. Using the Laurent series for Ra(z) on |z| > r(A),
we have

1 1 [ f(2) <= Ak

— O f(2)R =_— -2y — dz

2mi Jr (Z)vé\(fz) az 2mi Jr z ;) zk dz
7

Since f(z)/z is bounded on I and the summation converges
uniformly on compact sets, the sum and integral can be
interchanged to give

1 B . k| 1 f(z)
5 f(z)Ra(z) dz = Z/ﬂ_ [2771'§ézk+1 dz] :
e

r k=0

By Cauchy’s Differentiation formula we have

(k) 2
i:fk(O): 1 %f()dz.

k! 2mi Jp zk+1

Thus we obtain

1
— (O f(2)R — E AR = f(A).
i P (z)Ra(z) dz 2 EP (A)



— Second Reading Quiz Question: The spectral radius r(A) is the
supremum of the absolute values of the eigenvalues of A.

True

—

—+) Corollary 12.4.7. The spectral radius of A € M,(C) satisfies
[r(A) = sup{[A| : X € o(A)}\

Note. For a polynomial q(z) = ag + a1z + axz> +--- + a,z" € ClZ]
and A € M,(C), recall that

(a0 = 2l + A+ A +---+anAg

Corollary 12.4.8 (Cayley-Hamilton Theorem). For A € M,(C),
let p(z) = det(z/ — A), the characteristic polynomial of A. Then

p(A) =0.

— Nota Bene 12.4.9. What this poorly worded remark wanted to
say is that no polynomial in A is formed if we replace z by A on

the right side of p(z) = det(z/ — A) and then compute the
determinant. TA




Example (in lieu of 12.4.10). We verify the Cayley-Hamilton

Theorem for
A [1 1] | é_,

4 1

The characteristic polynomial of A is

¢ 31

p(z)=(z-3)(z+1)=2z>-2z-3.

Replacing z by A in the characteristic polynomial we have

1 111 1 1 1 10
2 . _ . .
w-2a-a= ol ] -2l 1 -3l ]
52 _[22] [30
- 18 5] (8 2 03
07 01~ R
— 107 01




What questions do you have?

r(A) = k"m A1
>
md,a?ge\/\c(m('ﬂoc It-If
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