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We are now in the position of proving, for every linear operator
A ∈ Mn(C), the existence of the spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ + Dλ)

where

• Pλ is the matrix coefficient A−1 in the Laurent series of RA(z)
about λ,

• R(Pλ) = Eλ, the generalized eigenspace of A for λ, and

• Dλ is the matrix coefficient A−2 in the Laurent series of
RA(z) about λ.

We have seen this spectral decomposition in two examples already.

The computation tool for finding the spectral decomposition of A
is the method of partial fractions applied to the nonzero entries of
the resolvent

RA(z) = (zI − A)−1.

Yes, it is that straightforward.



Lemma 12.6.1. For A ∈ Mn(C) and λ ∈ σ(A), the linear operator
Dλ ∈ Mn(C) satisfies

Dλ = (A− λI )Pλ.

Moreover, the spectral radius of Dλ is zero, i.e., r(Dλ) = 0.

Note. The equation

Dλ = (A− λI )Pλ

holds if and only if
APλ = λPλ + Dλ

holds.

Note. Since

r(Dλ) = sup{|µ| : µ ∈ σ(Dλ)} = 0

the only eigenvalue of Dλ is 0 and it has an algebraic multiplicity
of n.



Example (in lieu of 12.6.2). We verify

Dλ = (A− λI )Pλ

for

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


and λ = 2.

Recall that

P2 =


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

 and D2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

 .



For the verification of

Dλ = (A− λI )Pλ

for λ = 2 we have

(A− 2I )P2 =


0 1 0 0
0 0 1 0
0 0 0 3
0 0 0 3




1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0



=


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0


= D2.

This implies that
AP2 = 2P2 + D2.



What questions do you have?

Remark. Recall that a matrix B ∈ Mn(C) is called nilpotent if
there is l ∈ N such that B l = 0.



Lemma 12.6.3. A matrix B ∈ Mn(C) satisfies r(B) = 0 if and
only if B is nilpotent.

Proof. Suppose that r(B) = 0.

Then σ(B) = {0}, i.e., every eigenvalue of B is zero.

Hence the characteristic polynomial of B is p(z) = zn.

By the Cayley-Hamilton Theorem, we have have Bn = p(B) = 0,
which says that B is nilpotent.

Now suppose that B is nilpotent.

Then there exists l ∈ N such that B l = 0.

This implies that Bk = 0 for all k ≥ l .

Hence for any matrix norm ‖ · ‖ we have ‖Bk‖ = 0 for all k ≥ l .

This implies that r(B) = limk→∞ ‖Bk‖1/k = 0.



Remark. Lemma 12.6.1,

r(Dλ) = 0,

and Lemma 12.6.3,

r(B) = 0 ⇔ B is nilpotent,

show that the linear operator

Dλ is nilpotent.

Definition. For A ∈ Mn(C) and λ ∈ σ(A), the nilpotent linear
operator Dλ is called the eigennilpotent of A associated with the
eigenvalue λ.

Note. The presence of a nonzero Dλ in the spectral decomposition
indicates the deviation of the linear operator from being
semisimple.



Remark 12.6.4. Recall that the order of a nilpotent B ∈ Mn(C) is
the smallest l ∈ N such that B l = 0.

For a nilpotent B of order l , each Bk with 0 ≤ k < l , we have
Bk 6= 0 so that N (Bk) is a proper subspace of Cn.

Since B l = B l+1 = 0, then

N (B l) = N (B l+1) = Cn,

and so ind(B) = l , i.e., the order of B is the same as the index of
B.

Second Reading Quiz Question: The index of a nilpotent matrix is
the same as its order.

True

From Exercise 12.6, the index of a nilpotent B is no bigger than n,
meaning that ind(B) ≤ n.



What questions do you have?



Proposition 12.6.5. For A ∈ Mn(C) and λ ∈ σ(A), the order mλ

of the eigennilpotent Dλ of A satisfies

mλ ≤ dim(R(Pλ)).

Proof. By Lemma 12.5.5 part (iii) we have Dλ = PλDλ = DλPλ.

We show (a) R(Pλ) is Dλ-invariant and (b) R(Dλ) ⊂ R(Pλ).

To show (a) R(Pλ) is Dλ-invariant, let y ∈ R(Pλ).

Then there exists x ∈ Cn such that y = Pλx.

Hence Dλy = DλPλx = Pλ(Dλx) ∈ R(Pλ)⇒ R(Pλ) is
Dλ-invariant.

To show (b) R(Dλ) ⊂ R(Pλ), let y ∈ R(Dλ).

Then there is x ∈ Cn such that y = Dλx.

Hence y = Dλx = Pλ(Dλx) ∈ R(Pλ)⇒ R(Dλ) ⊂ R(Pλ) .



We can thus consider Dλ = DλPλ as a linear operator on R(Pλ).

That mλ ≤ dim(R(Pλ)) now follows from Exercise 12.6, i.e.,
ind(Dλ) ≤ dim(R(Pλ)). �

Example. We illustrate R(Dλ) ⊂ R(Pλ) for

A =


2 1 0 0
0 2 1 0
0 0 2 3
0 0 0 5


for λ = 2 where

P2 =


1 0 0 −1/9
0 1 0 −1/3
0 0 1 −1
0 0 0 0

 and D2 =


0 1 0 −1/3
0 0 1 −1
0 0 0 0
0 0 0 0

 .
Here

R(P2) = span(e1, e2, e3) ⊃ R(D2) = span(e1, e2).



Remark 12.6.6. Proposition 12.6.5 implies that the resolvent
RA(z) has no essential singularities.

So RA(z) is meromorphic on ρ(A).

More precisely, part (iv) of Lemma 12.5.5 simplifies to

RA(z) =
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
+
∞∑
k=0

(−1)k(z − λ)kSk+1
λ

and part (v) of Lemma 12.5.5 simplifies to

RA(z)Pλ =
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
.

Note. The isolated singularity of RA(z) at z = λ is a simple pole if
Dλ = 0 or is a pole of order mλ ≥ 2 if Dλ 6= 0.



What questions do you have?



Remark. We now turn attention to showing that

R(Pλ) = Eλ,

and developing some results to be used in the next section to
establish uniqueness of the spectral decomposition.

We notice that if y ∈ R(Pλ), then (λI − A)y ∈ R(Pλ) because for
y = Pλx we have

(λI − A)y = (λI − A)Pλx = Dλ(−x) ∈ R(Dλ),

where we are using

Dλ = (A− λI )Pλ = −(λI − A)Pλ,

and, as shown in the proof of Proposition 12.6.5, that
R(Dλ) ⊂ R(Pλ), whence that

(λI − A)y ∈ R(Pλ).



The converse is also true as the next result asserts.

Lemma 12.6.7. For A ∈ Mn(C), let λ ∈ σ(A) and y ∈ Cn. If
(λI − A)y ∈ R(Pλ), then y ∈ R(Pλ).

Remark 12.6.8. The proof of Lemma 12.6.7 only depends on the
following properties of the eignprojections Pµ and eigennilpotents
Dµ:

(1)
∑

µ∈σ(A)

Pµ = I ,

(2) PµPµ′ = 0 for µ 6= µ′,

(3) DµPµ = Dµ, and

(4) APµ = µPµ + Dµ for all µ ∈ σ(A).

This is important for the uniqueness of the spectral decomposition.

Theorem 12.6.9. For A ∈ Mn(C) and λ ∈ σ(A), there holds

R(Pλ) = Eλ.



Idea of Proof. By repeated use of Lemma 12.6.7,

(λI − A)y ∈ R(Pλ)⇒ y ∈ R(Pλ),

we obtain Eλ ⊂ R(Pλ) as follows.

Recall that Eλ = N ((λI − A)kλ) where kλ = ind(λI − A).

For y ∈ N ((λI − A)kλ), we have

(λI − A)((λI − A)kλ−1y) = (λI − A)kλy = 0 ∈ R(Pλ),

so that
(λI − A)kλ−1y ∈ R(Pλ).

Continue until we reach

(λI − A)y ∈ R(Pλ)⇒ y ∈ R(Pλ).

This gives Eλ ⊂ Pλ.



To get Eλ = R(Pλ) for all λ ∈ σ(A), the idea is to establish

Cn =
⊕

λ∈σ(A)

R(Pλ)

and compare this with the already established

Cn =
⊕

λ∈σ(A)

Eλ.

The inclusions Eλ ⊂ Pλ force the equalities Eλ = R(Pλ) for all
λ ∈ σ(A).

The direct sum decomposition with R(Pλ) is established using
their completeness and independence.

Remark 12.6.10. The proof of Theorem 12.6.9 only depends
properties of the projections listed in Remark 12.6.8. This is
important in the next section when we prove the uniqueness of the
spectral decomposition.



What questions do you have?



Theorem 12.6.12 (Spectral Decomposition Theorem). For
A ∈ Mn(C), and λ ∈ σ(A), let Pλ be the spectral projection of A
associated to λ, and let Dλ be the eigennilpotent of A associated
to λ with its order mλ. The resolvent of A takes the form

RA(z) =
∑

λ∈σ(A)

[
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1

]
,

and there holds the spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ + Dλ

)
.

Proof. From Lemma 12.5.5 part (v) and the nilpotency of Dλ we
have

RA(z)Pλ =
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1
.



Combining this with the completeness of the spectral projections
gives

RA(z) = RA(z)I

= RA(z)
∑

λ∈σ(A)

Pλ

=
∑

λ∈σ(A)

RA(z)Pλ

=
∑

λ∈σ(A)

[
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1

]
.

Recall that APλ = λPλ + Dλ.

Combining this with the completeness of the spectral projections
gives

A = AI = A
∑

λ∈σ(A)

Pλ =
∑

λ∈σ(A)

APλ =
∑

λ∈σ(A)

(
λPλ + Dλ

)
.



First Reading Quiz Question: Comment on the relationship
between the form of the resolvent presented in the Spectral
Decomposition Theorem 12.6.12,

RA(z) =
∑

λ∈σ(A)

[
Pλ

z − λ
+

mλ−1∑
k=1

Dk
λ

(z − λ)k+1

]
,

and the partial fraction decomposition of the resolvent.

Remark. The form of the resolvent stated in the Spectral
Decomposition Theorem is the PRECISELY form we have already
been getting by using the partial fraction decompositions for the
rational function entries of the resolvent.



What questions do you have?



Example (in lieu of 12.6.13). Find the spectral decomposition for
the linear operator

A =

−1 11 −3
−2 8 −1
−1 5 0

 .
The characteristic polynomial of A is

det(zI − A) = z3 − 7z2 + 16z − 12 = (z − 2)2(z − 3).

The adjugate of zI − A is

adj(zI − A) =

z2 − 8z + 5 11z − 15 −3z + 13
−2z + 1 z2 + z − 3 −z + 5
−z − 2 5z − 6 z2 − 7z + 14

 .
Performing nine partial fraction decompositions (one for each
entry) the resolvent is

1

z − 2

11 −18 −4
5 −8 −2
5 −9 −1

+
1

(z − 2)2

7 −7 −7
3 −3 −3
4 −4 −4

+
1

z − 3

−10 18 4
−5 9 2
−5 9 2

 .



From this we have

P2 =

11 −18 −4
5 −8 −2
5 −9 −1

 , D2 =

7 −7 −7
3 −3 −3
4 −4 −4

 , P3 =

−10 18 4
−5 9 2
−5 9 2

 ,
whence the spectral decomposition is

A = 2P2 + D2 + 3P3.

From this spectral decomposition we can finding “quicker” means
of computing powers of A, such as

A2 = (2P2 + D2 + 3P3)(2P2 + D2 + 3P3)

= 4P2
2 + 2P2D2 + 6P2P3 + 2D2P2 + D2

2 + 3D2P3

+ 6P3P2 + 3P3D2 + 9P2
3

= 4P2 + 4D2 + 9P3.

Not only can we take powers of A, we can also take holomorphic
images of A, and get expressions that look an awful lot like
spectral decompositions!



Corollary 12.6.14. For A ∈ Mn(C), let f be holomorphic complex
valued function defined on a simply connected open set containing
σ(A). If for λ ∈ σ(A), the complex constants an,λ are the
coefficients in the power series expansion of f about λ, i.e.,

f (z) = f (λ) +
∞∑
n=1

an,λ(z − λ)n,

then

f (A) =
∑

λ∈σ(A)

[
f (λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
.

In the case that A is semisimple the expression simplifies to

f (A) =
∑

λ∈σ(A)

f (λ)Pλ.



Example (in lieu of 12.6.15). In the previous example, we used
the spectral decomposition

A = 2P2 + D2 + 3P3

to directly compute

A2 = 4P2 + 4D2 + 9P3.

We will use Corollary 12.6.14 to compute this by finding the
coefficients of the power series expansion of the square function
expanded about λ = 2:

f (z) = z2 = (z−2 + 2)2 = ((z−2) + 2)2 = 4 + 4(z−2) + (z−2)2.

The Taylor series coefficients of f (z) about λ = 2 are

a0,2 = 4, a1,2 = 4, a2,2 = 1, ak,2 = 0 for all k ≥ 3.



Since D3 = 0 we do not need the Taylor coefficients of f (z) = z2

expanded about λ = 3.

By Corollary 12.6.14, using a1,2 = 4, we have

A2 = f (A)

=
∑

λ∈σ(A)

[
f (λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
= 22P2 + 4D2 + 32P3

= 4P2 + 4D2 + 9P3.

This agrees with what we computed earlier, but this is much faster.



What questions do you have?


