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Recall the Semisimple Spectral Mapping Theorem 4.3.12 which
states that for a semisimple A ∈ Mn(C) and a polynomial p ∈ C[x ],
the set of eigenvalues of the the linear operator p(A) is precisely

p(σ(A)) = {p(λ) : λ ∈ σ(A)}.

We extend this result in two ways:

• to all linear operators A ∈ Mn(C), and

• to all complex-valued functions f holomorphic on a simply
connected open set containing the spectrum of a given linear
operator.

This gives the Spectral Mapping Theorem.

Additionally we prove the uniqueness of the spectral decomposition
of a linear operator

A =
∑

λ∈σ(A)

(
λPλ + Dλ

)
for eigenprojections Pλ, with R(Pλ) = Eλ, and eigennilpotents Dλ.



This shows that the conclusion of Corollary 12.6.14,

f (A) =
∑

λ∈σ(A)

[
f (λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

]
,

is the spectral decomposition of f (A).

Somewhere in the expression for f (A) are the eigenprojections and
the eigennilpotents for f (A) for the eigenvalues of f (A), and we
will see exactly what they are by means of the Spectral Mapping
Theorem.

Finally we use the spectral decomposition theory to develop the
power method, a means of computing the eigenvector of a linear
operator that has a dominant eigenvalue.



Theorem 12.7.1 (Spectral Mapping Theorem). For A ∈ Mn(C),
if f is holomorphic on an open disk containing σ(A), then

σ(f (A)) = f (σ(A)) .

Moreover, if x ∈ Cn \ {0} is an eigenvector of A corresponding to
λ ∈ σ(A), then x is an eigenvector of f (A) corresponding to f (λ),
i.e., for x 6= 0,

Ax = λx⇒ f (A)x = f (λ)x.

Second Reading Quiz Question. If A ∈ Mn(C) and λ ∈ σ(A), then
sin(λ) ∈ σ(sin(A)).

True

The function f (z) = sin(z) is entire, hence holomorphic on the
open set C containing σ(A) for any A ∈ Mn(C), so by the Spectral
Mapping Theorem sin(λ) belongs to σ(sin(A)).



Example (in lieu of 12.7.2). Recall that the eigenvalues and
eigenvectors of

A =

[
1 1
4 1

]
are

λ1 = 3, ξ1 =

[
1
2

]
and λ2 = −1, ξ2 =

[
1
−2

]
.

The solution of the initial value problem x′ = Ax, x(0) = x0 is

x(t) = exp(tA)x0.

For each constant α ∈ C, the function fα(z) = exp(αz) is entire.

By the Spectral Mapping Theorem, we have

σ(fα(A)) = fα(σ(A)) = {eαλ1 , eαλ2} = {e3α, e−α},

and the eigenvectors ξ1, ξ2 of A are eigenvectors of



fα(A) = exp(αA)

corresponding to e3α and e−α respectively.

Restricting α ∈ R, say α = t, we obtain the eigenvalues

e3t and e−t

with their corresponding eigenvectors ξ1 and ξ2 for exp(tA).

In particular, since exp(tA)ξ2 = e−tξ2 for each t ≥ 0, we have

lim
t→∞

exp(tA)ξ2 = lim
t→∞

e−tξ2 = 0.

Similarly we would get

lim
t→−∞

exp(tA)ξ1 = lim
t→−∞

e3tξ1 = 0.

The point of all of this is that we can compute these limits by
means of the Spectral Mapping Theorem without explicitly
computing exp(tA).



What questions do you have?



Recall the spectral decomposition

A =
∑

λ∈σ(A)

(
λPλ + Dλ

)
.

The following gives its uniqueness.

Theorem 12.7.5. For A ∈ Mn(C), if for each λ ∈ σ(A) there is a
projection Qλ ∈ Mn(C) and a nilpotent Cλ ∈ Mn(C) satisfying

(i) QλQµ = 0 for all µ ∈ σ(A) with λ 6= µ,

(ii) QλCλ = CλQλ = Cλ,

(iii) QµCλ = CλQµ = 0 for all µ ∈ σ(A) with µ 6= λ,

(iv)
∑

λ∈σ(A)Qλ = I , and

(v) A =
∑

λ∈σ(A)
(
λQλ + Cλ

)
then for each λ ∈ σ(A) the projection Qλ is the eigenprojection Pλ
associated to A, and the nilpotent Cλ is the eigennipotent Dλ
associated to A.



Sketch of Proof. For every µ ∈ σ(A) we have by item (v), the
“spectral decomposition” of A, and items (i), (ii), and (iii) that

AQµ =

 ∑
λ∈σ(A)

(
λQλ + Cλ

)Qµ

=
∑

λ∈σ(A)

(
λQλQµ + CλQµ

)
= µQ2

µ + CµQµ

= µQµ + Cµ

This implies that
Cµ = (A− µI )Qµ.

Since by Lemma 12.6.1

Dµ = (A− µI )Pµ,

we get Dµ = Cµ by showing Pµ = Qµ for all µ ∈ σ(A).



The proofs of Lemma 12.6.7 and Theorem 10.6.9 that give
Eλ = R(Pλ) carry over to give

Eµ = R(Qµ).

[Recall that in Section 10.6, Lemma 12.6.7 and Theorem 12.6.9
were consequences of the stated properties of projections and
nilpotents, not specifically the projections and nilpotents that came
from the resolvent.]

For v ∈ Cn and λ ∈ σ(A) we have

Qλv ∈ Eλ = R(Pλ).

For µ ∈ σ(A) \ {λ} we have

PµPλ = 0

so that since Qλv ∈ R(Pλ), we have

PµQλv = 0.

Since R(Qµ) = Eµ and Pµ is a projection with the same range as
Qµ we have that



PµQµv = Qµv

for every v ∈ Cn by Lemma 12.1.3.

Using item (v), the completeness of the projections Qλ, λ ∈ σ(A),
we have for a fixed µ ∈ σ(A) that

Pµv = PµIv

= Pµ

 ∑
λ∈σ(A)

Qλv


=

∑
λ∈σ(A)

PµQλv

= PµQµv

= Qµv.

This implies that Pµ = Qµ.



What questions do you have?



Theorem 12.7.6 (Mapping the Spectral Decomposition). Let
A ∈ Mn(C) and f be holomorphic on a simply connected open set
U containing σ(A). If for each λ ∈ σ(A) we have the Taylor series

f (z) = f (λ) +
∞∑
k=1

an,λ(z − λ)k ,

then

f (A) =
∑

λ∈σ(A)

(
f (λ)Pλ +

mλ−1∑
k=1

ak,λD
k
λ

)
is the spectral decomposition of f (A), i.e., for each ν ∈ σ(f (A))
the eigenprojection for f (A) is given by∑

µ∈σ(A),f (µ)=ν

Pµ,

and the corresponding eigennilpotent Dν is given by∑
µ∈σ(A),f (µ)=ν

mµ−1∑
k=1

ak,µD
k
µ .



Example (in lieu of 12.7.7). Find the eigenprojections and
eigennilpotents of the square of

A =


1 1 0 0 0
0 1 0 0 1
0 0 −1 1 0
0 0 0 −1 1
0 0 0 0 2


using the formulas in Theorem 12.7.6.

From the partial fraction decomposition of the entries of the
resolvent RA(z) we obtain

P1 =


1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 , D1 =


0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 ,



P−1 =


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0

 , D−1 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1 −1/3
0 0 0 0 0
0 0 0 0 0

 ,

P2 =


0 0 0 0 1
0 0 0 0 1
0 0 0 0 1/9
0 0 0 0 1/3
0 0 0 0 1

 .
The spectrum of A is σ(A) = {1,−1, 2} and the spectral
decomposition is

A = P1 + D1 − P−1 + D−1 + 2P2.

Since f (z) = z2 is entire, we have by the Spectral Mapping
Theorem that

σ(f (A)) = f (σ(A)) = {12, (−1)2, 22} = {1, 4}.



What questions do you have before we proceed?



The eigenprojection for f (A) corresponding to ν = 1 ∈ σ(f (A)) is∑
µ∈σ(A),f (µ)=1

Pµ = P1 + P−1

=


1 0 0 0 −1
0 1 0 0 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

+


0 0 0 0 0
0 0 0 0 0
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0



=


1 0 0 0 −1
0 1 0 0 −1
0 0 1 0 −1/9
0 0 0 1 −1/3
0 0 0 0 0

 .

The eigenprojection for f (A) corresponding ν = 4 ∈ σ(f (A)) is

P2.



To get the eigennilpotent for f (A) corresponding to ν = 1 we
compute the Taylor series expansions of

f (z) = z2

about z = 1 and about z = −1:

z2 = (1 + z − 1)2

= (1 + (z − 1))2

= 1 + 2(z − 1) + (z − 1)2,

z2 = (−1 + z + 1)2

= (−1 + (z + 1))2

= 1−2(z + 1) + (z + 1)2.

Here we have

a1,1 = 2,

a1,−1 = −2.



The eigennilpotent for f (A) corresponding to ν = 1 is

∑
µ∈σ(A),f (µ)=1

mµ−1∑
k=1

ak,µD
k
µ

= 2D1 − 2D−1

=


0 2 0 0 −2
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

−


0 0 0 0 0
0 0 0 0 0
0 0 0 2 −2/3
0 0 0 0 0
0 0 0 0 0



=


0 2 0 0 −2
0 0 0 0 0
0 0 0 −2 2/3
0 0 0 0 0
0 0 0 0 0

 .



We can verify all of the eigenprojections and eigennilpotents for

f (A) = A2

by directly squaring the spectral decomposition of A:

A2 = (P1 + D1 − P−1 + D−1 + 2P2)(P1 + D1 − P−1 + D−1 + 2P2)

= P1 + 2D1 + P−1 − 2D−1 + 4P2

= P1 + P−1 + 2D1 − 2D−1 + 4P2,

where we use

P2
1 = P1, P

2
−1 = P−1, P

2
2 = P2, D

2
1 = 0, D2

−1 = 0,

and
P1D−1 = 0, P−1D1 = 0, etc.



What questions do you have?



Example (in lieu of 12.7.7). Use Theorem 12.7.6 to find the
inverse of the invertible

A =

−1 11 −3
−2 8 −1
−1 5 0

 .
Recall from last time that the spectral decomposition is

A = 2P2 + D2 + 3P3

where

P2 =

11 −18 −4
5 −8 −2
5 −9 −1

 , D2 =

7 −7 −7
3 −3 −3
4 −4 −4

 , P3 =

−10 18 4
−5 9 2
−5 9 2

 .
To find the inverse of A we use Taylor series expansions of function
f (z) = z−1 about λ ∈ σ(A) = {2, 3}.



Since

f (l)(z) =
(−1)l l!

z l+1
,

the Taylor series of f (z) about λ 6= 0 is

f (z) =
∞∑
l=0

(−1)l

λl+1
(z − λ)l .

We identify

al ,λ =
(−1)l

λl+1
.

By Theorem 12.7.6 we obtain

A−1 = f (A) =
∑

λ∈σ(A)

(
f (λ)Pλ +

mλ−1∑
l=1

al ,λD
l
λ

)

=
1

2
P2 −

1

4
D2 +

1

3
P3 =

5/12 −5/4 13/12
1/12 −1/4 5/12
−1/6 −1/2 7/6

 .
[Computed and verified by Maple.]



The power method is algorithm to find an eigenvector for certain
type of linear operator on a finite dimensional vector space.

Definition. An eigenvalue λ ∈ σ(A) is called semisimple if the
geometric multiplicity of λ equals its algebraic multiplicity.

Definition. An eigenvalue λ ∈ σ(A) is called dominant if for all
µ ∈ σ(A) \ {λ} there holds

|λ| > |µ|.

Theorem 12.7.8. For A ∈ Mn(C), suppose that 1 ∈ σ(A) is
semisimple and dominant. If v ∈ Cn satisfies P1v 6= 0, then for any
norm ‖ · ‖ on Cn, there holds

lim
k→∞

‖Akv − P1v‖ = 0.

It is HW (Exercise 12.34) to extend this result to when the
dominant eigenvalue is something other than λ = 1.



First Reading Quiz Question. Geometrically what is the Power
Method doing?

Remark. The power method consist in making a good initial guess
v for an eigenvector corresponding to the dominant semisimple
eigenvalue 1.

The “good” part of the initial guess is that P1v 6= 0, because by
the semisimpleness of λ = 1 the image P1v ∈ E1 \ {0} is an
eigenvector.

Although v is not necessarily an eigenvector, its iterates Akv
converge in any matrix norm to the eigenvector P1v and the rate
of convergence is determined by the dominance of the dominant
semisimple eigenvalue. [Draw a picture.]



What questions do you have?



Example (in lieu of 12.7.9). The linear operator

A =

1/4 3/4 0
0 1 0
0 0 1/4


is semisimple with spectrum

σ(A) = {1, 1/4}

where 1/4 has algebraic multiplicity 2.

This means that eigenvalue 1 is semisimple and dominant.

To find an eigenvector corresponding to eigenvalue 1 by the power
method we start with the initial guess

v =

1
1
1

 .



Then

Av =

1/4 3/4 0
0 1 0
0 0 1/4

1
1
1

 =

 1
1

1/4

 ,
A2v =

 1
1

1/16

 , A3v =

 1
1

1/64

 , . . . ,
Akv =

 1
1

1/4k

→
1

1
0

 .
Theorem 12.7.8 says this limit is an eigenvector of A corresponding
to the eigenvalue 1 and that it is the image of the eigenprojection
of the initial guess.



From the partial fraction decomposition of the resolvent RA(z) we
have

P1 =

0 1 0
0 1 0
0 0 0

 and P1/4 =

1 −1 0
0 0 0
0 0 1

 .
We verify the spectral decomposition1/4 3/4 0

0 1 0
0 0 1/4

 = A = P1 + (1/4)P1/4.

The limit of Akv is indeed

P1v =

0 1 0
0 1 0
0 0 0

1
1
1

 =

1
1
0

 .



What questions do you have?


