Math 346 Lecture \#1

6.1 The Directional Derivative

6.1.1 Tangent Vectors

Definition 6.1.1. For an open interval (a, b), a function $f:(a, b) \rightarrow \mathbb{R}$ is differentiable at $x \in(a, b)$ if the limit (of the rise over the run)

$$
\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

exists. When the limit exists we write $f^{\prime}(x)$ for this limit. If f is differentiable at every point $x \in(a, b)$, we say f is differentiable on (a, b).
Remark 6.1.2. To see how that derivative $m=f^{\prime}\left(x_{0}\right)$ defines a linear transformation $L(h)=m h$ that best approximates curve $y(h)=f\left(x_{0}+h\right)-f\left(x_{0}\right)$ for h close to zero, we recast the limit for $f^{\prime}\left(x_{0}\right)$ in terms of the standard norm-induced metric $d(x, y)=|x-y|$ on \mathbb{R}.

For every $\epsilon>0$ there exists $\delta>0$ such that for all $0<|h|<\delta$ there holds

$$
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}-m\right|<\epsilon,
$$

or equivalently

$$
\left|\frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)-m h}{h}\right|<\epsilon .
$$

This is precisely

$$
\left|\frac{y(h)-L(h)}{h}\right|<\epsilon \text { or }(m-\epsilon) h=L(h)-\epsilon h<y(h)<L(h)+\epsilon h=(m+\epsilon) h .
$$

This says that the graph of $y(h)$ lies between the graphs of $L(h)-\epsilon h$ and $L(h)+\epsilon h$ over the interval $|h|<\delta$.
Definition 6.1.3. A curve $\gamma:(a, b) \rightarrow \mathbb{R}^{n}$ is differentiable at $t_{0} \in(a, b)$ if

$$
\lim _{h \rightarrow 0} \frac{\gamma\left(t_{0}+h\right)-\gamma\left(t_{0}\right)}{h}
$$

exists with respect to the standard norm-induced metrics on \mathbb{R} and \mathbb{R}^{n}, i.e., there is $a \in \mathbb{R}^{n}$ such that for every $\epsilon>0$ there exists $\delta>0$ for which for all $0<|h|<\delta$ there holds

$$
\left\|\frac{\gamma\left(t_{0}+h\right)-\gamma\left(t_{0}\right)-a h}{h}\right\|_{2}<\epsilon
$$

If the limit exists, it is called the derivative of γ at t_{0} and denoted by $\gamma^{\prime}\left(t_{0}\right)$. If γ is differentiable at every $t \in(a, b)$, then we say that γ is differentiable on (a, b).
Remark 6.1.4. The derivative $a=\gamma^{\prime}\left(t_{0}\right)$ defines a linear transformation $L: \mathbb{R} \rightarrow \mathbb{R}^{n}$ given by $L(h)=a h$ that best approximates $\gamma\left(t_{0}+h\right)-\gamma\left(t_{0}\right)$ for $|h|$ small.

Proposition 6.1.5. A curve $\gamma:(a, b) \rightarrow \mathbb{R}^{n}$ represented in standard coordinates as $\left[\gamma_{1}(t), \ldots, \gamma_{n}(t)\right]^{\mathrm{T}}$ is differentiable at $t_{0} \in(a, b)$ if and only if $\gamma_{i}:(a, b) \rightarrow \mathbb{R}$ is differentiable at t_{0} for every $i=1, \ldots, n$.
Proof. Since all norm-induced metrics on \mathbb{R}^{n} are topologically equivalent, we can use any norm-induced metric on \mathbb{R}^{n} to compute the limit. We will use the metric induced by the ∞-norm.

Suppose the derivative $\gamma_{i}^{\prime}\left(t_{0}\right)$ exists for all $i=1, \ldots, n$.
Then for $\epsilon>0$ there exists $\delta_{i}>0$ such that for all $0<|h|<\delta_{i}$ there holds

$$
\left|\frac{\gamma_{i}\left(t_{0}+h\right)-\gamma_{i}\left(t_{0}\right)}{h}-\gamma_{i}^{\prime}\left(t_{0}\right)\right|<\epsilon .
$$

Set $\delta=\min \left\{\delta_{1}, \ldots, \delta_{n}\right\}$.
Then for all $0<|h|<\delta$ there holds

$$
\left\|\frac{\gamma\left(t_{0}+h\right)-\gamma\left(t_{0}\right)}{h}-\left[\gamma_{1}^{\prime}\left(t_{0}\right), \ldots, \gamma_{n}^{\prime}\left(t_{0}\right)\right]^{\mathrm{T}}\right\|_{\infty}=\max _{i=1, \ldots, n}\left|\frac{\gamma_{i}\left(t_{0}+h\right)-\gamma_{i}\left(t_{0}\right)}{h}-\gamma_{i}^{\prime}\left(t_{0}\right)\right|<\epsilon
$$

This implies that γ is differentiable at t_{0}.
Now suppose that γ is differentiable at t_{0}, with derivative $\gamma^{\prime}\left(t_{0}\right)=\left[y_{1}, \ldots, y_{n}\right]^{\mathrm{T}}$.
Then for $\epsilon>0$ there exists $\delta>0$ such that for all $0<|h|<\delta$ there holds

$$
\left|\frac{\gamma_{i}\left(t_{0}+h\right)-\gamma_{i}\left(t_{0}\right)}{h}-y_{i}\right| \leq\left\|\frac{\gamma\left(t_{0}+h\right)-\gamma\left(t_{0}\right)}{h}-\left[y_{1}, \ldots, y_{n}\right]^{\mathrm{T}}\right\|_{\infty}<\epsilon
$$

This implies that γ_{i} is differentiable at t_{0}.
Application 6.1.6. A twice-differentiable curve $\gamma:(a, b) \rightarrow \mathbb{R}^{n}$ can represent the position of a particle as a function of time.
The derivative $\gamma^{\prime}(t)$ is the instantaneous velocity (or simply the velocity), and its norm $\left\|\gamma^{\prime}(t)\right\|_{2}$ is the speed.
The second derivative $\gamma^{\prime \prime}(t)$ is the acceleration.
Often the motion of the particle is governed by a second-order differential equation,

$$
\gamma^{\prime \prime}(t)=F\left(t, \gamma(t), \gamma^{\prime}(t)\right)
$$

for a function $F: \mathbb{R} \times \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$.
Definition 6.1.7. For a differentiable curve $\gamma:(a, b) \rightarrow \mathbb{R}^{n}$, the tangent vector of γ at $t \in(a, b)$ is the derivative $\gamma^{\prime}(t)$.
Example 6.1.8. A particle moving according to $\gamma(t)=[\cos t \sin t]^{\mathrm{T}}$ traces out the circle of radius 1 centered at the origin.
The velocity $\gamma^{\prime}(t)=[-\sin t, \cos t]^{\mathrm{T}}$ is orthogonal to $\gamma(t)$, and the acceleration $\gamma^{\prime \prime}(t)=$ $[-\cos t,-\sin t]^{\mathrm{T}}$ satisfies the differential equation $\gamma^{\prime \prime}(t)=-\gamma(t)$.
Proposition 6.1.9. If $f, g: \mathbb{R} \rightarrow \mathbb{R}^{n}$ and $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ are differentiable, and $\langle\cdot, \cdot\rangle$ is the standard inner product on \mathbb{R}^{n}, then
(i) $(f+g)^{\prime}=f^{\prime}+g^{\prime}$ (sum rule),
(ii) $(\varphi f)^{\prime}=\varphi^{\prime} f+\varphi f^{\prime}$ (product rule),
(iii) $\langle f, g\rangle^{\prime}=\left\langle f^{\prime}, g\right\rangle+\left\langle f, g^{\prime}\right\rangle$, and
(iv) $(f \circ \varphi)^{\prime}(t)=\varphi^{\prime}(t) f^{\prime}(\varphi(t))$ (chain rule).

The proof of this is HW (Exercise 6.2).

6.1.2 Directional Derivatives

The directional, or Gâteaux, derivative is a generalization of the scalar-variable derivative to multivariable functions.

It is obtained a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ by composing f, for a point $x \in \mathbb{R}^{n}$ and a vector $\mathrm{v} \in \mathbb{R}^{n}$, with a curve $\gamma(t)=x+t \mathrm{v}$ in \mathbb{R}^{n}, i.e., $(f \circ \gamma)(t)=f(x+t \mathrm{v})$, which gives a curve in \mathbb{R}^{m}, and then taking the derivative with respect to t and evaluating it at $t=0$.
Definition 6.1.10. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The directional derivative of f at $x \in \mathbb{R}^{n}$ in the direction $\mathrm{v} \in \mathbb{R}^{n}$ is the limit

$$
\lim _{t \rightarrow 0} \frac{f(x+t \mathrm{v})-f(x)}{t}
$$

if it exists. The limit, denoted by $D_{\mathrm{v}} f(x)$, assesses the change in the value of f in the direction v from x.
Note. In multivariable calculus the vector v is always taken to be a unit vector when computing the directional derivative. We will not assume this here.
Remark 6.1.11. We show in the next section for fixed x that $\mathrm{v} \rightarrow D_{\mathrm{v}} f(x)$ is a linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m}. For now we illustrate this by way of example.
Example (in lieu of 6.1.12). Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be given by $f(x, y)=x^{2} y^{3}$. Then for $\mathrm{v}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}\right]^{\mathrm{T}}$, we have

$$
\begin{aligned}
D_{\mathrm{v}} f(x, y) & =\left.\frac{d}{d t} f\left(x+t \mathrm{v}_{1}, y+t \mathrm{v}_{2}\right)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\left(x+t \mathrm{v}_{1}\right)^{2}\left(y+t \mathrm{v}_{2}\right)^{3}\right)\right|_{t=0} \\
& =\left.\left(2\left(x+t \mathrm{v}_{1}\right)\left(\mathrm{v}_{1}\right)\left(y+t \mathrm{v}_{2}\right)^{3}+\left(x+t \mathrm{v}_{1}\right)^{2} 3\left(y+t \mathrm{v}_{2}\right)^{2}\left(\mathrm{v}_{2}\right)\right)\right|_{t=0} \\
& =2 x y^{3} \mathrm{v}_{1}+3 x^{2} y^{2} \mathrm{v}_{2}
\end{aligned}
$$

We recognize this as the inner product of the vectors $\left[2 x y^{3}, 3 x^{2} y^{2}\right]^{\mathrm{T}}$ and $\mathrm{v}=\left[\mathrm{v}_{1}, \mathrm{v}_{2}\right]^{\mathrm{T}}$, and so $D_{\mathrm{v}} f(x, y)$ is indeed linear in v .

6.1.3 Partial Derivatives

Partial derivatives of a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ are the directional derivatives of f along the standard basis vectors e_{1}, \ldots, e_{n} of \mathbb{R}^{n}.
Definition 6.1.13. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$. The $i^{\text {th }}$ partial derivative of f at a point $x \in \mathbb{R}^{n}$ is the limit

$$
\lim _{h \rightarrow 0} \frac{f\left(x+h e_{i}\right)-f(x)}{h}
$$

if it exists, and is denoted by $D_{i} f(x)$.
Example 6.1.14. Unfortunately, the existence of all of the partial derivatives of a function at a point does not imply the continuity of the function at that point. For

$$
f(x, y)= \begin{cases}\frac{x y}{x^{2}+y^{2}} & \text { if }(x, y) \neq(0,0) \\ 0 & \text { if }(x, y)=(0,0)\end{cases}
$$

we have

$$
\begin{aligned}
& D_{1} f(0,0)=\lim _{h \rightarrow 0} \frac{f(h, 0)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0 \\
& D_{2} f(0,0)=\lim _{h \rightarrow 0} \frac{f(0, h)-f(0,0)}{h}=\lim _{h \rightarrow 0} \frac{0}{h}=0
\end{aligned}
$$

But along the sequence $(1 / n, 2 / n)$ which approaches the origin as $n \rightarrow \infty$ we have

$$
f(1 / n, 2 / n)=\frac{2 / n^{2}}{1 / n^{2}+4 / n^{2}}=\frac{2}{5}
$$

while $f(0,0)=0$, so that f is not continuous at $(0,0)$.
Remark 6.1.15. In the $i^{\text {th }}$ partial derivative $D_{i} f(x)$, it is only the $i^{\text {th }}$ coordinate that is changing while the other coordinates remain fixed. We may thus use all of the differentiation rules for single-variable functions when computing $D_{i} f(x)$ as long as the rules apply.

