
Math 346 Lecture #1
6.1 The Directional Derivative

6.1.1 Tangent Vectors

Definition 6.1.1. For an open interval (a, b), a function f : (a, b)→ R is differentiable
at x ∈ (a, b) if the limit (of the rise over the run)

lim
h→0

f(x+ h)− f(x)

h

exists. When the limit exists we write f ′(x) for this limit. If f is differentiable at every
point x ∈ (a, b), we say f is differentiable on (a, b).

Remark 6.1.2. To see how that derivative m = f ′(x0) defines a linear transformation
L(h) = mh that best approximates curve y(h) = f(x0 +h)−f(x0) for h close to zero, we
recast the limit for f ′(x0) in terms of the standard norm-induced metric d(x, y) = |x− y|
on R.

For every ε > 0 there exists δ > 0 such that for all 0 < |h| < δ there holds∣∣∣∣f(x0 + h)− f(x0)

h
−m

∣∣∣∣ < ε,

or equivalently ∣∣∣∣f(x0 + h)− f(x0)−mh
h

∣∣∣∣ < ε.

This is precisely∣∣∣∣y(h)− L(h)

h

∣∣∣∣ < ε or (m− ε)h = L(h)− εh < y(h) < L(h) + εh = (m+ ε)h.

This says that the graph of y(h) lies between the graphs of L(h)− εh and L(h) + εh over
the interval |h| < δ.

Definition 6.1.3. A curve γ : (a, b)→ Rn is differentiable at t0 ∈ (a, b) if

lim
h→0

γ(t0 + h)− γ(t0)

h

exists with respect to the standard norm-induced metrics on R and Rn, i.e., there is
a ∈ Rn such that for every ε > 0 there exists δ > 0 for which for all 0 < |h| < δ there
holds ∥∥∥∥γ(t0 + h)− γ(t0)− ah

h

∥∥∥∥
2

< ε.

If the limit exists, it is called the derivative of γ at t0 and denoted by γ′(t0). If γ is
differentiable at every t ∈ (a, b), then we say that γ is differentiable on (a, b).

Remark 6.1.4. The derivative a = γ′(t0) defines a linear transformation L : R → Rn

given by L(h) = ah that best approximates γ(t0 + h)− γ(t0) for |h| small.



Proposition 6.1.5. A curve γ : (a, b) → Rn represented in standard coordinates
as [γ1(t), . . . , γn(t)]T is differentiable at t0 ∈ (a, b) if and only if γi : (a, b) → R is
differentiable at t0 for every i = 1, . . . , n.

Proof. Since all norm-induced metrics on Rn are topologically equivalent, we can use any
norm-induced metric on Rn to compute the limit. We will use the metric induced by the
∞-norm.

Suppose the derivative γ′i(t0) exists for all i = 1, . . . , n.

Then for ε > 0 there exists δi > 0 such that for all 0 < |h| < δi there holds∣∣∣∣γi(t0 + h)− γi(t0)
h

− γ′i(t0)
∣∣∣∣ < ε.

Set δ = min{δ1, . . . , δn}.
Then for all 0 < |h| < δ there holds∥∥∥∥γ(t0 + h)− γ(t0)

h
− [γ′1(t0), . . . , γ

′
n(t0)]

T

∥∥∥∥
∞

= max
i=1,...,n

∣∣∣∣γi(t0 + h)− γi(t0)
h

− γ′i(t0)
∣∣∣∣ < ε.

This implies that γ is differentiable at t0.

Now suppose that γ is differentiable at t0, with derivative γ′(t0) = [y1, . . . , yn]T.

Then for ε > 0 there exists δ > 0 such that for all 0 < |h| < δ there holds∣∣∣∣γi(t0 + h)− γi(t0)
h

− yi
∣∣∣∣ ≤ ∥∥∥∥γ(t0 + h)− γ(t0)

h
− [y1, . . . , yn]T

∥∥∥∥
∞
< ε.

This implies that γi is differentiable at t0. �

Application 6.1.6. A twice-differentiable curve γ : (a, b) → Rn can represent the
position of a particle as a function of time.

The derivative γ′(t) is the instantaneous velocity (or simply the velocity), and its norm
‖γ′(t)‖2 is the speed.

The second derivative γ′′(t) is the acceleration.

Often the motion of the particle is governed by a second-order differential equation,

γ′′(t) = F (t, γ(t), γ′(t))

for a function F : R× Rn × Rn → Rn.

Definition 6.1.7. For a differentiable curve γ : (a, b)→ Rn, the tangent vector of γ at
t ∈ (a, b) is the derivative γ′(t).

Example 6.1.8. A particle moving according to γ(t) = [cos t sin t]T traces out the
circle of radius 1 centered at the origin.

The velocity γ′(t) = [− sin t, cos t]T is orthogonal to γ(t), and the acceleration γ′′(t) =
[− cos t,− sin t]T satisfies the differential equation γ′′(t) = −γ(t).

Proposition 6.1.9. If f, g : R→ Rn and ϕ : R→ R are differentiable, and 〈·, ·〉 is the
standard inner product on Rn, then



(i) (f + g)′ = f ′ + g′ (sum rule),

(ii) (ϕf)′ = ϕ′f + ϕf ′ (product rule),

(iii) 〈f, g〉′ = 〈f ′, g〉+ 〈f, g′〉, and

(iv) (f ◦ ϕ)′(t) = ϕ′(t)f ′(ϕ(t)) (chain rule).

The proof of this is HW (Exercise 6.2).

6.1.2 Directional Derivatives

The directional, or Gâteaux, derivative is a generalization of the scalar-variable derivative
to multivariable functions.

It is obtained a function f : Rn → Rm by composing f , for a point x ∈ Rn and a vector
v ∈ Rn, with a curve γ(t) = x+ tv in Rn, i.e., (f ◦ γ)(t) = f(x+ tv), which gives a curve
in Rm, and then taking the derivative with respect to t and evaluating it at t = 0.

Definition 6.1.10. Let f : Rn → Rm. The directional derivative of f at x ∈ Rn in the
direction v ∈ Rn is the limit

lim
t→0

f(x+ tv)− f(x)

t

if it exists. The limit, denoted by Dvf(x), assesses the change in the value of f in the
direction v from x.

Note. In multivariable calculus the vector v is always taken to be a unit vector when
computing the directional derivative. We will not assume this here.

Remark 6.1.11. We show in the next section for fixed x that v → Dvf(x) is a linear
transformation from Rn to Rm. For now we illustrate this by way of example.

Example (in lieu of 6.1.12). Let f : R2 → R be given by f(x, y) = x2y3. Then for
v = [v1, v2]

T, we have

Dvf(x, y) =
d

dt
f(x+ tv1, y + tv2)

∣∣∣∣
t=0

=
d

dt

(
(x+ tv1)

2(y + tv2)
3
)∣∣∣∣

t=0

=

(
2(x+ tv1)(v1)(y + tv2)

3 + (x+ tv1)
23(y + tv2)

2(v2)

)∣∣∣∣
t=0

= 2xy3v1 + 3x2y2v2.

We recognize this as the inner product of the vectors [2xy3, 3x2y2]T and v = [v1, v2]
T,

and so Dvf(x, y) is indeed linear in v.

6.1.3 Partial Derivatives

Partial derivatives of a function f : Rn → Rm are the directional derivatives of f along
the standard basis vectors e1, . . . , en of Rn.

Definition 6.1.13. Let f : Rn → Rm. The ith partial derivative of f at a point x ∈ Rn

is the limit

lim
h→0

f(x+ hei)− f(x)

h



if it exists, and is denoted by Dif(x).

Example 6.1.14. Unfortunately, the existence of all of the partial derivatives of a
function at a point does not imply the continuity of the function at that point. For

f(x, y) =


xy

x2 + y2
if (x, y) 6= (0, 0),

0 if (x, y) = (0, 0),

we have

D1f(0, 0) = lim
h→0

f(h, 0)− f(0, 0)

h
= lim

h→0

0

h
= 0,

D2f(0, 0) = lim
h→0

f(0, h)− f(0, 0)

h
= lim

h→0

0

h
= 0.

But along the sequence (1/n, 2/n) which approaches the origin as n→∞ we have

f(1/n, 2/n) =
2/n2

1/n2 + 4/n2
=

2

5

while f(0, 0) = 0, so that f is not continuous at (0, 0).

Remark 6.1.15. In the ith partial derivative Dif(x), it is only the ith coordinate
that is changing while the other coordinates remain fixed. We may thus use all of the
differentiation rules for single-variable functions when computing Dif(x) as long as the
rules apply.


