Math 346 Lecture \#4

6.4 Properties of the Derivative

Throughout let $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$ be Banach spaces over the same field \mathbb{F}, and U an open set in X.

We have already been using the next result, and will continue to use it tacitly.
Lemma 6.4.1. For a function $f: U \rightarrow Y$, a point $\mathrm{x} \in Y$, and $L \in \mathscr{B}(X, Y)$, the following are equivalent.
(i) The function f is differentiable at x with derivative L.
(ii) For every $\epsilon>0$ there exists $\delta>0$ with $B(\mathrm{x}, \delta) \subset U$ such that for all $h \in B(\mathrm{x}, \delta)$ there holds

$$
\|f(\mathrm{x}+h)-f(\mathrm{x})-L h\|_{Y} \leq \epsilon\|h\|_{X} .
$$

The only minor wrinkle in the proof of this is the \leq in part (ii). But this follows by replacing ϵ with $\epsilon / 2$ when applying the definition of differentiable.

6.4.1. Linearity

The reader is reminded of Theorem 3.5.11 that for Banach spaces $\left(X,\|\cdot\|_{X}\right)$ and $\left(Y,\|\cdot\|_{Y}\right)$, the collection $\mathscr{B}(X, Y)$ is a normed linear space, so that linear combinations of finitely many elements of $\mathscr{B}(X, Y)$ belong to $\mathscr{B}(X, Y)$.
Recall that the image $D f(\mathrm{x}) v$ of the derivative is not linear in x , but it is linear in v . We now show that this image is linear in f.
Theorem 6.4.2 (Linearity, pointwise). For $f, g: U \rightarrow Y$, if f and g are differentiable at $\mathrm{x} \in U$, then for any $a, b \in \mathbb{F}$ the linear combination $a f+b g$ is differenitable at x and

$$
D(a f+b g)(\mathrm{x})=a D f(\mathrm{x})+b D g(\mathrm{x})
$$

Proof. By the assumption of differentiability of f and g at x , for any $\epsilon>0$ there is $\delta>0$ (the minimum of the δ 's for f and g and the radius of a ball centered at x and contained in $U)$ such that for all $h \in B(\mathrm{x}, \delta)$ there holds

$$
\|f(\mathrm{x}+h)-f(\mathrm{x})-D f(\mathrm{x}) h\|_{Y} \leq \frac{\epsilon\|h\|_{X}}{2(|a|+1)}
$$

and

$$
\|g(\mathrm{x}+h)-g(\mathrm{x})-D g(\mathrm{x}) h\|_{Y} \leq \frac{\epsilon\|h\|_{X}}{2(|b|+1)}
$$

Thus

$$
\begin{aligned}
& \|a f(\mathrm{x}+h)+b g(\mathrm{x}+h)-a f(\mathrm{x})-b g(\mathrm{x})-a D f(\mathrm{x}) h-b D g(\mathrm{x}) h\|_{y} \\
& \quad \leq|a|\|f(\mathrm{x}+h)-f(\mathrm{x})-D f(\mathrm{x}) h\|_{Y}+|b|\|g(\mathrm{x}+h)-g(\mathrm{x})-D g(\mathrm{x}) h\|_{Y} \\
& \quad \leq \frac{\epsilon|a|\|h\|_{X}}{2(|a|+1)}+\frac{\epsilon|b|\|h\|_{X}}{2(|b|+1)} \\
& \leq \epsilon\|h\|_{X}
\end{aligned}
$$

Since $D f(\mathrm{x})$ and $D g(\mathrm{x})$ both belong to $\mathscr{B}(X, Y)$, then $a D f(\mathrm{x})+b D g(\mathrm{x}) \in \mathscr{B}(X, Y)$.
Thus $a f+b g$ is differentiable at x with derivative $a D f(\mathrm{x})+b D g(\mathrm{x})$.
Note. The version of Theorem 6.4.2 in the book - if f and g are differentiable on U then $a f+b g$ is differentiable on U with derivative $a D f+b D g$ - follows from the pointwise version proved above.
Remark 6.4.3. An immediate consequence of Theorem 6.4.2 is that the set $C^{1}(U, Y)$ is a vector space. Is there a "natural" norm on this vector space? Yes, and we will learn about it in Section 6.5 (and give the definition of it - something missing in the book).

6.4.2 The Product Rule

We can not multiply $f, g: U \rightarrow Y$, i.e., $f(\mathrm{x}) g(\mathrm{x})$ might not make sense, for an arbitrary Banach space Y. However if $Y=\mathbb{F}$, then we can.
Theorem 6.4.4 (Product Rule - pointwise). If $f, g: U \rightarrow \mathbb{F}$, are differentiable at $\mathrm{x} \in U$, then the product $h=f g$ is differentiable at x and the derivative of h at x satisfies

$$
D h(\mathrm{x})=g(\mathrm{x}) D f(\mathrm{x})+f(\mathrm{x}) D g(\mathrm{x})
$$

i.e., for all $\xi \in X$ we have

$$
D h(\mathrm{x}) \xi=g(\mathrm{x})(D f(\mathrm{x}) \xi)+f(\mathrm{x})(D g(\mathrm{x}) \xi) \in \mathbb{F}
$$

because $D f(\mathrm{x}) \in \mathscr{B}(X, \mathbb{F})$ and $D g(\mathrm{x}) \in \mathscr{B}(X, \mathbb{F})$ so that $D f(\mathrm{x}) \xi$ and $D g(\mathrm{x}) \xi$ both belong to \mathbb{F}, whence as $g(\mathrm{x})$ and $f(\mathrm{x})$ both belong to \mathbb{F} that $g(\mathrm{x})(D f(\mathrm{x}) \xi)$ and $f(\mathrm{x})(D g(\mathrm{x}) \xi)$ both belong to \mathbb{F}, so that finally $D h(\mathrm{x}) \xi$ belongs to \mathbb{F}.
Proof. Assuming f and g are differentiable at x for each $\epsilon>0$ there is $\delta_{\mathrm{x}}>0$ (the minimum of a finite number of positive δ 's) with $B(\mathrm{x}, \delta) \subset U$, and a constant $L>0$ (by Proposition 6.3.7) such that for all $0<\|h\|<\delta_{x}$ there holds

$$
|f(\mathrm{x}+h)-f(\mathrm{x})| \leq L\|h\|_{X}
$$

and

$$
|f(\mathrm{x}+h)-f(\mathrm{x})-D f(\mathrm{x}) h| \leq \frac{\epsilon\|h\|_{X}}{3(|g(\mathrm{x})|+1)}
$$

and

$$
|g(\mathrm{x}+h)-g(\mathrm{x})-D g(\mathrm{x}) h| \leq \frac{\epsilon\|h\|_{X}}{3(|f(\mathrm{x})|+L)}
$$

We are going to do an $\epsilon / 3$ argument, and this will require the presence of three constraints on the choice of δ.
For $\epsilon>0$ choose

$$
\delta=\min \left\{1, \delta_{x}, \frac{\epsilon}{3 L\left(\|D g(\mathrm{x})\|_{X, \mathbb{F}}+1\right)}\right\} .
$$

Each constraint on δ will be used for one of the $\epsilon / 3$ parts.

When $0<\|h\|_{X}<\delta$ that

$$
\begin{aligned}
\mid f(\mathrm{x}+ & h) g(\mathrm{x}+h)-f(\mathrm{x}) g(\mathrm{x})-g(\mathrm{x}) D f(\mathrm{x}) h-f(\mathrm{x}) D g(\mathrm{x}) h \mid \\
= & \mid f(\mathrm{x}+h) g(\mathrm{x}+h)-f(\mathrm{x}+h) g(\mathrm{x})+f(\mathrm{x}+h) g(\mathrm{x})-f(\mathrm{x}) g(\mathrm{x}) \\
& +f(\mathrm{x}+h) D g(\mathrm{x}) h-f(\mathrm{x}+h) D g(\mathrm{x}) h-g(\mathrm{x}) D f(\mathrm{x}) h-f(\mathrm{x}) D g(\mathrm{x}) h \mid \\
\leq & |f(\mathrm{x}+h)||g(\mathrm{x}+h)-g(\mathrm{x})-D g(\mathrm{x}) h| \\
& +|g(\mathrm{x})||f(\mathrm{x}+h)-f(\mathrm{x})-D f(\mathrm{x}) h| \\
& +|f(\mathrm{x}+h)-f(\mathrm{x})|\|D g(\mathrm{x})\|_{X, \mathbb{F}}\|h\|_{X} \\
\leq & (|f(\mathrm{x})|+L) \frac{\epsilon\|h\|_{X}}{3(|f(\mathrm{x})|+L)}+|g(\mathrm{x})| \frac{\epsilon\|h\|_{X}}{3(|g(\mathrm{x})|+1)}+\delta L\|D g(\mathrm{x})\|_{X, \mathbb{F}}\|h\|_{X} \\
\leq & \frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}=\epsilon
\end{aligned}
$$

where we have made use of the implication

$$
|f(\mathrm{x}+h)-f(\mathrm{x})| \leq L\|h\|_{X} \Rightarrow|f(\mathrm{x}+h)| \leq|f(\mathrm{x})|+L\|h\|_{X}
$$

and the implication $\delta<1 \Rightarrow\|h\|_{X}<1$.
We now look at other product-like differentiation rules. One of these involve matrix functions. We say that a matrix function is differentiable at a point in its domain if every entry in the matrix function is differentiable at that point. The derivative of a differentiable matrix function is the entry-wise derivative of the matrix function.
Proposition 6.4.6 (pointwise version). (i) For an open set U of \mathbb{R}^{n}, let $\mathrm{u}, \mathrm{v}: U \rightarrow$ \mathbb{R}^{m}, and define $f: U \rightarrow \mathbb{R}$ by

$$
f(\mathrm{x})=\mathrm{u}(\mathrm{x})^{\mathrm{T}} \mathrm{v}(\mathrm{x}) .
$$

If u and v are differentiable at a point $\mathrm{x} \in U$, then f is differentiable at x and the derivative of f at x satisfies

$$
D f(\mathrm{x})=\mathrm{u}(\mathrm{x})^{\mathrm{T}} D \mathrm{v}(\mathrm{x})+\mathrm{v}(\mathrm{x})^{\mathrm{T}} D \mathrm{u}(\mathrm{x})
$$

i.e., for all $h \in \mathbb{R}^{n}$ we have

$$
D f(\mathrm{x}) \mathrm{h}=\mathrm{u}(\mathrm{x})^{\mathrm{T}}(D \mathrm{v}(\mathrm{x}) h)+\mathrm{v}(\mathrm{x})^{\mathrm{T}}(D \mathrm{u}(\mathrm{x}) h) \in \mathbb{R},
$$

because $D \mathrm{v}(\mathrm{x})$ and $D \mathrm{u}(\mathrm{x})$ both belong to $\mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ so that $D \mathrm{v}(\mathrm{x}) h$ and $D \mathrm{u}(\mathrm{x}) h$ both belong to \mathbb{R}^{m}, whence as $\mathrm{u}(\mathrm{x})$ and $\mathrm{v}(\mathrm{x})$ both belong to \mathbb{R}^{m} that $\mathrm{u}(\mathrm{x})^{\mathrm{T}}(D v(\mathrm{x}) h)$ and $\mathrm{v}(\mathrm{x})^{\mathrm{T}}(D u(\mathrm{x}) h)$ both belong to \mathbb{R}, so finally that $D f(\mathrm{x}) h$ belongs to \mathbb{R}.
(ii) For a matrix $A \in M_{n}(\mathbb{R})$ the function $g: \mathbb{R}^{n} \rightarrow \mathbb{R}$ defined by $g(\mathrm{x})=\mathrm{x}^{\mathrm{T}} A \mathrm{x}$ is differentiable at every $\mathrm{x} \in \mathbb{R}^{n}$ with

$$
D g(\mathrm{x})=\mathrm{x}^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right)
$$

i.e., for all $h \in \mathbb{R}^{n}$ we have

$$
D g(\mathrm{x}) h=\mathrm{x}^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right) h \in \mathbb{R},
$$

because $A+A^{\mathrm{T}} \in M_{n}(\mathbb{R})$ and $h \in \mathbb{R}$ so that $\left(A+A^{\mathrm{T}}\right) h \in \mathbb{R}^{n}$, so that $\mathrm{x}^{\mathrm{T}}\left(A+A^{\mathrm{T}}\right) h \in \mathbb{R}$. (iii) For an open subset U of \mathbb{R}^{n} let $\mathrm{w}: U \rightarrow \mathbb{R}^{m}$ and $B: U \rightarrow M_{k \times m}(\mathbb{R})$ and define $H: U \rightarrow \mathbb{R}^{k}$ by $H(\mathrm{x})=B(\mathrm{x}) \mathrm{w}(\mathrm{x})$. If w and B are differentiable at $\mathrm{x} \in U$, then the function H is differentiable at x with

$$
D H(\mathrm{x})=B(\mathrm{x}) D \mathrm{w}(\mathrm{x})+\left[\begin{array}{c}
\mathrm{w}(\mathrm{x})^{\mathrm{T}} D \mathrm{~b}_{1}^{\mathrm{T}}(\mathrm{x}) \\
\mathrm{w}(\mathrm{x})^{\mathrm{T}} D \mathrm{~b}_{2}^{\mathrm{T}}(\mathrm{x}) \\
\vdots \\
\mathrm{w}(\mathrm{x})^{\mathrm{T}} D \mathrm{~b}_{k}^{\mathrm{T}}(\mathrm{x})
\end{array}\right]
$$

where b_{i} is the $k^{\text {th }}$ row of B, i.e., for each $\xi \in \mathbb{R}^{n}$ we have

$$
D H(\mathrm{x}) \xi=B(\mathrm{x})(D \mathrm{w}(\mathrm{x}) \xi)+\left[\begin{array}{c}
\mathrm{w}\left(\mathrm{x}^{\mathrm{T}}\left(D \mathrm{~b}_{1}^{\mathrm{T}}(\mathrm{x}) \xi\right)\right. \\
\mathrm{w}(\mathrm{x})^{\mathrm{T}}\left(D \mathrm{~b}_{2}^{\mathrm{T}}(\mathrm{x}) \xi\right) \\
\vdots \\
\mathrm{w}(\mathrm{x})^{\mathrm{T}}\left(D \mathrm{~b}_{k}^{\mathrm{T}}(\mathrm{x}) \xi\right)
\end{array}\right] \in \mathbb{R}^{k}
$$

because $D \mathrm{w}(\mathrm{x}) \in \mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, whence $D \mathrm{w}(\mathrm{x}) \xi \in \mathbb{R}^{m}$ so that $B(\mathrm{x})(D \mathrm{w}(\mathrm{x}) \xi) \in \mathbb{R}^{k}$, and because $\mathrm{b}_{i}^{\mathrm{T}}: U \rightarrow \mathbb{R}^{m}$ so that $D \mathrm{~b}_{i}^{\mathrm{T}}(\mathrm{x}) \in \mathscr{L}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$, whence $D \mathrm{~b}_{i}^{\mathrm{T}}(\mathrm{x}) \xi \in \mathbb{R}^{m}$, so that $\mathrm{w}(\mathrm{x})^{\mathrm{T}}\left(D \mathrm{~b}_{i}^{\mathrm{T}}(\mathrm{x}) \xi\right) \in \mathbb{R}$.
The proof of Proposition 6.4.6 is HW (Exercise 6.16). Hint: for part (i) write $u(x)$ and $\mathrm{v}(\mathrm{x})$ in terms of standard coordinates and apply Theorem 6.4.4; for part (ii) put the guess for the derivative in the definition and see what happens; for part (iii) write $\mathrm{w}(\mathrm{x})$ and $B(\mathrm{x})$ in standard coordinates for $n=2, m=2$, and $k=2$ and see what happens, keeping in mind that Fréchet derivatives are linear transformations.

6.4.3 The Chain Rule

Recall from Theorem 3.5.14 that for normed linear spaces $\left(X,\|\cdot\|_{X}\right),\left(Y,\|\cdot\|_{Y}\right)$, and $\left(Z,\|\cdot\|_{Z}\right)$, if $T \in \mathscr{B}(X, Y)$ and $S \in \mathscr{B}(Y, Z)$, then the composition $S T \in \mathscr{B}(X, Z)$.
Theorem 6.4.7 (The Chain Rule, pointwise version). Suppose ($X,\|\cdot\|_{X}$), $\left(Y,\|\cdot\|_{Y}\right)$, and $\left(Z,\|\cdot\|_{Z}\right)$ are Banach spaces, that U is open in X and V is open in Y, and $f: U \rightarrow Y$ and $g: V \rightarrow Z$ with $f(U) \subset V$. If f is Fréchet differentiable at $\mathrm{x} \in U$ and g is Fréchet differentiable at $\mathrm{y}=f(\mathrm{x}) \in V$, then $h=g \circ f: U \rightarrow Z$ is Fréchet differentiable at x with

$$
D h(\mathrm{x})=D g(f(\mathrm{x})) D f(\mathrm{x})
$$

i.e., for all $\xi \in X$ we have

$$
D h(\mathrm{x}) \xi=D g(f(\mathrm{x}))(D f(\mathrm{x}) \xi) \in Z
$$

because $D f(\mathrm{x}) \in \mathscr{B}(X, Y)$ so that $D f(\mathrm{x}) \xi \in Y$, and because $D g(f(\mathrm{x})) \in \mathscr{B}(Y, Z)$ so that $D g(f(\mathrm{x}))(D f(\mathrm{x}) \xi) \in Z$.
Proof. Choose $\epsilon>0$.

By the assumed differentiability of f at x and the assumed differentiability of g at $\mathrm{y}=$ $f(\mathrm{x})$, there is $\delta_{1}>0$ such that $B\left(\mathrm{x}, \delta_{1}\right) \subset U$ and for all $\xi \in X$ satisfying $0<\|\xi\|_{X}<\delta_{1}$ there holds

$$
\|f(\mathrm{x}+\xi)-f(\mathrm{x})-D f(\mathrm{x}) \xi\|_{Y} \leq \frac{\epsilon\|\xi\|_{X}}{2\left(\|D g(\mathrm{y})\|_{Y, Z}+1\right)}
$$

By Proposition 6.3.7, the assumed differentiability of f at x implies that f is locally Lipschitz at x, i.e., there exists $\delta_{2}>0$ and $L>0$ such that $B\left(\mathrm{x}, \delta_{2}\right) \subset U$ and for all $\xi \in X$ satisfying $0<\|\xi\|_{X}<\delta_{2}$ there holds

$$
\|f(\mathrm{x}+\xi)-f(\mathrm{x})\|_{X} \leq L\|\xi\|_{X}
$$

Set $\delta_{\mathrm{x}}=\min \left\{\delta_{1}, \delta_{2}\right\}$.
By the assumed differentiability of g at y there exists $\delta_{y}>0$ such that $B\left(\mathrm{y}, \delta_{\mathrm{y}}\right) \subset V$ and for all $0<\|\eta\|_{Y}<\delta_{\mathrm{y}}$ there holds

$$
\|g(\mathrm{y}+\eta)-g(\mathrm{y})-D g(\mathrm{y}) \eta\|_{Z} \leq \frac{\epsilon\|\eta\|_{Y}}{2 L}
$$

Set $\delta=\min \left\{\delta_{\mathrm{x}}, \delta_{\mathrm{y}} / L\right\}$. (Hence $L \delta \leq \delta_{\mathrm{y}}$ which we will use in a moment.)
If we set $\eta(\xi)=f(\mathrm{x}+\xi)-f(\mathrm{x})=f(\mathrm{x}+\xi)-\mathrm{y}$, then $h=g \circ f$ satisfies

$$
h(\mathrm{x}+\xi)-h(\mathrm{x})=g(f(\mathrm{x}+\xi))-g(f(\mathrm{x}))=g(y+\eta(\xi))-g(\mathrm{y})
$$

Thus for all $\xi \in X$ satisfying $\|\xi\|_{X}<\delta$ we have

$$
\|\eta(\xi)\|_{Y}=\|f(\mathrm{x}+\xi)-f(\mathrm{x})\|_{Y} \leq L\|\xi\|_{X}<L \delta \leq \delta_{\mathrm{y}}
$$

so that

$$
\begin{aligned}
& \| h(\mathrm{x}+\xi)-h(\mathrm{x})-D g(\mathrm{y}) D f(\mathrm{x}) \xi \|_{Z} \\
& \quad=\|g(\mathrm{y}+\eta(\xi))-g(\mathrm{y})-D g(\mathrm{y}) \eta(\xi)+D g(\mathrm{y}) \eta(\xi)-D g(\mathrm{y}) D f(\mathrm{x}) \xi\|_{Z} \\
& \quad \leq\|g(\mathrm{y}+\eta(\xi))-g(\mathrm{y})-D g(\mathrm{y}) \eta(\xi)\|_{Z}+\|D g(\mathrm{y}) \eta(\xi)-D g(\mathrm{y}) D f(\mathrm{x}) \xi\|_{Z} \\
& \leq\|g(\mathrm{y}+\eta(\xi))-g(\mathrm{y})-D g(\mathrm{y}) \eta(\xi)\|_{Z}+\|D g(\mathrm{y})\|_{Y, Z}\|\eta(\xi)-D f(\mathrm{x}) \xi\|_{Y} \\
&=\|g(\mathrm{y}+\eta(\xi))-g(\mathrm{y})-D g(\mathrm{y}) \eta(\xi)\|_{Z} \\
& \quad+\|D g(\mathrm{y})\|_{Y, Z}\|f(\mathrm{x}+\xi)-f(\mathrm{x})-D f(\mathrm{x}) \xi\|_{Y} \\
& \leq \frac{\epsilon\|\eta(\xi)\|_{Y}}{2 L}+\|D g(\mathrm{y})\|_{Y, Z} \frac{\epsilon\|\xi\|_{X}}{2\left(\|D g(\mathrm{y})\|_{Y, Z}+1\right)} \\
& \quad \leq \frac{\epsilon L\|\xi\|_{X}}{2 L}+\frac{\epsilon\|\xi\|_{X}}{2} \\
& \quad= \epsilon\|\xi\|_{X}
\end{aligned}
$$

Since $D f(\mathrm{x}) \in \mathscr{B}(X, Y)$ and $D g(\mathrm{y}) \in \mathscr{B}(Y, Z)$, then $D g(\mathrm{y}) D f(\mathrm{x}) \in \mathscr{B}(X, Z)$.
This shows that $h=g \circ f$ is differentiable at x with derivative is $D g(f(\mathrm{x})) D f(\mathrm{x})$.

