
Math 346 Lecture #4
6.4 Properties of the Derivative

Throughout let (X, ‖ · ‖X) and (Y, ‖ · ‖Y ) be Banach spaces over the same field F, and U
an open set in X.

We have already been using the next result, and will continue to use it tacitly.

Lemma 6.4.1. For a function f : U → Y , a point x ∈ Y , and L ∈ B(X, Y ), the
following are equivalent.

(i) The function f is differentiable at x with derivative L.

(ii) For every ε > 0 there exists δ > 0 with B(x, δ) ⊂ U such that for all h ∈ B(x, δ)
there holds

‖f(x + h)− f(x)− Lh‖Y ≤ ε‖h‖X .

The only minor wrinkle in the proof of this is the ≤ in part (ii). But this follows by
replacing ε with ε/2 when applying the definition of differentiable.

6.4.1. Linearity

The reader is reminded of Theorem 3.5.11 that for Banach spaces (X, ‖·‖X) and (Y, ‖·‖Y ),
the collection B(X, Y ) is a normed linear space, so that linear combinations of finitely
many elements of B(X, Y ) belong to B(X, Y ).

Recall that the image Df(x)v of the derivative is not linear in x, but it is linear in v. We
now show that this image is linear in f .

Theorem 6.4.2 (Linearity, pointwise). For f, g : U → Y , if f and g are differen-
tiable at x ∈ U , then for any a, b ∈ F the linear combination af + bg is differenitable at
x and

D(af + bg)(x) = aDf(x) + bDg(x).

Proof. By the assumption of differentiability of f and g at x, for any ε > 0 there is δ > 0
(the minimum of the δ’s for f and g and the radius of a ball centered at x and contained
in U) such that for all h ∈ B(x, δ) there holds

‖f(x + h)− f(x)−Df(x)h‖Y ≤
ε‖h‖X

2(|a|+ 1)

and

‖g(x + h)− g(x)−Dg(x)h‖Y ≤
ε‖h‖X

2(|b|+ 1)
.

Thus

‖af(x + h) + bg(x + h)− af(x)− bg(x)− aDf(x)h− bDg(x)h‖y
≤ |a| ‖f(x + h)− f(x)−Df(x)h‖Y + |b| ‖g(x + h)− g(x)−Dg(x)h‖Y

≤ ε|a| ‖h‖X
2(|a|+ 1)

+
ε|b| ‖h‖X
2(|b|+ 1)

≤ ε‖h‖X .



Since Df(x) and Dg(x) both belong to B(X, Y ), then aDf(x) + bDg(x) ∈ B(X, Y ).

Thus af + bg is differentiable at x with derivative aDf(x) + bDg(x). �

Note. The version of Theorem 6.4.2 in the book – if f and g are differentiable on U then
af + bg is differentiable on U with derivative aDf + bDg – follows from the pointwise
version proved above.

Remark 6.4.3. An immediate consequence of Theorem 6.4.2 is that the set C1(U, Y )
is a vector space. Is there a “natural” norm on this vector space? Yes, and we will learn
about it in Section 6.5 (and give the definition of it – something missing in the book).

6.4.2 The Product Rule

We can not multiply f, g : U → Y , i.e., f(x)g(x) might not make sense, for an arbitrary
Banach space Y . However if Y = F, then we can.

Theorem 6.4.4 (Product Rule – pointwise). If f, g : U → F, are differentiable at
x ∈ U , then the product h = fg is differentiable at x and the derivative of h at x satisfies

Dh(x) = g(x)Df(x) + f(x)Dg(x),

i.e., for all ξ ∈ X we have

Dh(x)ξ = g(x)(Df(x)ξ) + f(x)(Dg(x)ξ) ∈ F,

because Df(x) ∈ B(X,F) and Dg(x) ∈ B(X,F) so that Df(x)ξ and Dg(x)ξ both belong
to F, whence as g(x) and f(x) both belong to F that g(x)(Df(x)ξ) and f(x)(Dg(x)ξ)
both belong to F, so that finally Dh(x)ξ belongs to F.

Proof. Assuming f and g are differentiable at x for each ε > 0 there is δx > 0 (the
minimum of a finite number of positive δ’s) with B(x, δ) ⊂ U , and a constant L > 0 (by
Proposition 6.3.7) such that for all 0 < ‖h‖ < δx there holds

|f(x + h)− f(x)| ≤ L‖h‖X ,

and

|f(x + h)− f(x)−Df(x)h| ≤ ε‖h‖X
3(|g(x)|+ 1)

and

|g(x + h)− g(x)−Dg(x)h| ≤ ε‖h‖X
3(|f(x)|+ L)

.

We are going to do an ε/3 argument, and this will require the presence of three constraints
on the choice of δ.

For ε > 0 choose

δ = min

{
1, δx,

ε

3L(‖Dg(x)‖X,F + 1)

}
.

Each constraint on δ will be used for one of the ε/3 parts.



When 0 < ‖h‖X < δ that

|f(x + h)g(x + h)− f(x)g(x)− g(x)Df(x)h− f(x)Dg(x)h|
= |f(x + h)g(x + h)− f(x + h)g(x) + f(x + h)g(x)− f(x)g(x)

+ f(x + h)Dg(x)h− f(x + h)Dg(x)h− g(x)Df(x)h− f(x)Dg(x)h|
≤ |f(x + h)| |g(x + h)− g(x)−Dg(x)h|

+ |g(x)| |f(x + h)− f(x)−Df(x)h|
+ |f(x + h)− f(x)| ‖Dg(x)‖X,F‖h‖X

≤ (|f(x)|+ L)
ε‖h‖X

3(|f(x)|+ L)
+ |g(x)| ε‖h‖X

3(|g(x)|+ 1)
+ δL‖Dg(x)‖X,F‖h‖X

≤ ε

3
+
ε

3
+
ε

3
= ε

where we have made use of the implication

|f(x + h)− f(x)| ≤ L‖h‖X ⇒ |f(x + h)| ≤ |f(x)|+ L‖h‖X

and the implication δ < 1⇒ ‖h‖X < 1. �

We now look at other product-like differentiation rules. One of these involve matrix
functions. We say that a matrix function is differentiable at a point in its domain if
every entry in the matrix function is differentiable at that point. The derivative of a
differentiable matrix function is the entry-wise derivative of the matrix function.

Proposition 6.4.6 (pointwise version). (i) For an open set U of Rn, let u, v : U →
Rm, and define f : U → R by

f(x) = u(x)Tv(x).

If u and v are differentiable at a point x ∈ U , then f is differentiable at x and the
derivative of f at x satisfies

Df(x) = u(x)TDv(x) + v(x)TDu(x),

i.e., for all h ∈ Rn we have

Df(x)h = u(x)T(Dv(x)h) + v(x)T(Du(x)h) ∈ R,

because Dv(x) and Du(x) both belong to L (Rn,Rm) so that Dv(x)h and Du(x)h both
belong to Rm, whence as u(x) and v(x) both belong to Rm that u(x)T(Dv(x)h) and
v(x)T(Du(x)h) both belong to R, so finally that Df(x)h belongs to R.

(ii) For a matrix A ∈ Mn(R) the function g : Rn → R defined by g(x) = xTAx is
differentiable at every x ∈ Rn with

Dg(x) = xT(A+ AT),

i.e., for all h ∈ Rn we have

Dg(x)h = xT(A+ AT)h ∈ R,



because A+AT ∈Mn(R) and h ∈ R so that (A+AT)h ∈ Rn, so that xT(A+AT)h ∈ R.

(iii) For an open subset U of Rn let w : U → Rm and B : U → Mk×m(R) and define
H : U → Rk by H(x) = B(x)w(x). If w and B are differentiable at x ∈ U , then the
function H is differentiable at x with

DH(x) = B(x)Dw(x) +


w(x)TDbT

1 (x)
w(x)TDbT

2 (x)
...

w(x)TDbT
k (x)

 ,
where bi is the kth row of B, i.e., for each ξ ∈ Rn we have

DH(x)ξ = B(x)(Dw(x)ξ) +


w(x)T(DbT

1 (x)ξ)
w(x)T(DbT

2 (x)ξ)
...

w(x)T(DbT
k (x)ξ)

 ∈ Rk,

because Dw(x) ∈ L (Rn,Rm), whence Dw(x)ξ ∈ Rm so that B(x)(Dw(x)ξ) ∈ Rk, and
because bT

i : U → Rm so that DbT
i (x) ∈ L (Rn,Rm), whence DbT

i (x)ξ ∈ Rm, so that
w(x)T(DbT

i (x)ξ) ∈ R.

The proof of Proposition 6.4.6 is HW (Exercise 6.16). Hint: for part (i) write u(x) and
v(x) in terms of standard coordinates and apply Theorem 6.4.4; for part (ii) put the
guess for the derivative in the definition and see what happens; for part (iii) write w(x)
and B(x) in standard coordinates for n = 2, m = 2, and k = 2 and see what happens,
keeping in mind that Fréchet derivatives are linear transformations.

6.4.3 The Chain Rule

Recall from Theorem 3.5.14 that for normed linear spaces (X, ‖ · ‖X), (Y, ‖ · ‖Y ), and
(Z, ‖ · ‖Z), if T ∈ B(X, Y ) and S ∈ B(Y, Z), then the composition ST ∈ B(X,Z).

Theorem 6.4.7 (The Chain Rule, pointwise version). Suppose (X, ‖ · ‖X),
(Y, ‖·‖Y ), and (Z, ‖·‖Z) are Banach spaces, that U is open in X and V is open in Y , and
f : U → Y and g : V → Z with f(U) ⊂ V . If f is Fréchet differentiable at x ∈ U and g
is Fréchet differentiable at y = f(x) ∈ V , then h = g ◦f : U → Z is Fréchet differentiable
at x with

Dh(x) = Dg(f(x))Df(x),

i.e., for all ξ ∈ X we have

Dh(x)ξ = Dg(f(x))
(
Df(x)ξ) ∈ Z

because Df(x) ∈ B(X, Y ) so that Df(x)ξ ∈ Y , and because Dg(f(x)) ∈ B(Y, Z) so
that Dg(f(x))(Df(x)ξ) ∈ Z.

Proof. Choose ε > 0.



By the assumed differentiability of f at x and the assumed differentiability of g at y =
f(x), there is δ1 > 0 such that B(x, δ1) ⊂ U and for all ξ ∈ X satisfying 0 < ‖ξ‖X < δ1
there holds

‖f(x + ξ)− f(x)−Df(x)ξ‖Y ≤
ε‖ξ‖X

2(‖Dg(y)‖Y,Z + 1)
.

By Proposition 6.3.7, the assumed differentiability of f at x implies that f is locally
Lipschitz at x, i.e., there exists δ2 > 0 and L > 0 such that B(x, δ2) ⊂ U and for all
ξ ∈ X satisfying 0 < ‖ξ‖X < δ2 there holds

‖f(x + ξ)− f(x)‖X ≤ L‖ξ‖X .

Set δx = min{δ1, δ2}.
By the assumed differentiability of g at y there exists δy > 0 such that B(y, δy) ⊂ V and
for all 0 < ‖η‖Y < δy there holds

‖g(y + η)− g(y)−Dg(y)η‖Z ≤
ε‖η‖Y

2L
.

Set δ = min{δx, δy/L}. (Hence Lδ ≤ δy which we will use in a moment.)

If we set η(ξ) = f(x + ξ)− f(x) = f(x + ξ)− y, then h = g ◦ f satisfies

h(x + ξ)− h(x) = g(f(x + ξ))− g(f(x)) = g(y + η(ξ))− g(y).

Thus for all ξ ∈ X satisfying ‖ξ‖X < δ we have

‖η(ξ)‖Y = ‖f(x + ξ)− f(x)‖Y ≤ L‖ξ‖X < Lδ ≤ δy

so that

‖h(x + ξ)− h(x)−Dg(y)Df(x)ξ‖Z
= ‖g(y + η(ξ))− g(y)−Dg(y)η(ξ) +Dg(y)η(ξ)−Dg(y)Df(x)ξ‖Z
≤ ‖g(y + η(ξ))− g(y)−Dg(y)η(ξ)‖Z + ‖Dg(y)η(ξ)−Dg(y)Df(x)ξ‖Z
≤ ‖g(y + η(ξ))− g(y)−Dg(y)η(ξ)‖Z + ‖Dg(y)‖Y,Z‖η(ξ)−Df(x)ξ‖Y
= ‖g(y + η(ξ))− g(y)−Dg(y)η(ξ)‖Z

+ ‖Dg(y)‖Y,Z‖f(x + ξ)− f(x)−Df(x)ξ‖Y

≤ ε‖η(ξ)‖Y
2L

+ ‖Dg(y)‖Y,Z
ε‖ξ‖X

2(‖Dg(y)‖Y,Z + 1)

≤ εL‖ξ‖X
2L

+
ε‖ξ‖X

2
= ε‖ξ‖X .

Since Df(x) ∈ B(X, Y ) and Dg(y) ∈ B(Y, Z), then Dg(y)Df(x) ∈ B(X,Z).

This shows that h = g ◦ f is differentiable at x with derivative is Dg(f(x))Df(x). �


